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Abstract 

Climate variability is an external and stochastic factor that causes energy demand 

uncertainty. Energy managers can use climate-based models to understand future trends 

of energy demand and to adjust operations, policy, and budgets accordingly. This 

research focuses on 1) identifying how climate attributes impact energy use, 2) creating a 

historically informed statistical modeling framework to skillfully predict energy use, and 

3) forecasting future changes to energy use and costs, using CMIP5 temperature 

projections, at the campus level. After synthesizing the existing breadth of research on 

climate-informed energy modeling, a skillful, unbiased, climate-informed total energy 

consumption prediction model is developed for Wright-Patterson AFB (WPAFB) that is 

particularly skillful at predicting energy use during high and low use periods: the periods 

where impactful energy policy decisions are made (r2 = 73%, MAPE = 6.15, RPSS = 

0.59). CMIP5 projections of temperature inform the model to generate energy use 

forecasts, which reveal significant changes to energy use within the next decade and 

increases in annual energy use costs by $7.3-7.9M by the end of the century. Overall, 

energy use predictions and forecasts can pinpoint the impact of climate factors, inform 

how and when to mitigate changes, and justify intervention timing and financial 

decisions. 
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UNBIASED, CLIMATE-INFORMED MODELING OF INSTALLATION TOTAL 

ENERGY CONSUMPTION 

 

I.  Introduction 

1.1 Background 

 The impacts of climate change are a growing concern for facility and 

infrastructure asset managers across the private and public sectors. The performance and 

lifecycle of infrastructure systems, whose design and operations are influenced by climate 

trends and factors, could become less predictable in the future. Asset managers use data 

to drive operational decisions and decide where and when policy and structural 

interventions may be necessary to stabilize systems. The management of public 

infrastructure is a particularly important focus because impacts to these systems are a 

matter of public safety and national security, and this infrastructure is publicly funded. 

However, stability can be promoted by understanding how climate attributes impact 

facility and infrastructural systems, and by being able to predict how performance and 

use will change with changing climate. 

 The U.S. Congress tasked the Department of Defense (DoD) to provide a report 

of potential climate change impacts to military installations to understand how defense 

operations may be impacted by climate change. The resulting DoD report identified 

climate change associated weather events (e.g., drought, wild-fires, tornados, hurricanes, 

flooding), and identified installations that are susceptible those events. In response to the 

DoD’s findings, the Government Accountability Office (GAO) published a report 

highlighting the DoD’s installation robustness and resilience shortcomings, as related to 
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extreme events intensification driven by climate change [1]. While, the GAO 2019 report 

recommends the incorporation of climate projections and extreme event trends for 

installation planning, applications in trend-based analyses were largely overlooked [1].  

 Energy is a pivotal, no-fail, infrastructure system category at any organizational 

scale. Research exists examining climate-informed modeling of energy use from facility 

to multinational scales. However, due to data accessibility issues, campus-scale analyses 

are not common. Military installations provide a unique opportunity to conduct analyses 

at this scale. DoD installations are the U.S. government’s largest energy user [2], [3]. 

Therefore, energy reliability and accurate budgeting of this recurring cost should be a 

priority, to ensure installation operations are uninterrupted and taxpayer dollars are used 

responsibly. However, the amount of energy consumed can vary based on operational use 

patterns, temporality, and climate conditions. Through statistical modeling, it is possible 

to use climate factors to predict and forecast energy consumption accurately, so energy 

managers can proactively plan policy and budgets for short- and long-term energy 

consumption. 

 This thesis investigates the development of statistical, climate-informed, energy 

consumption prediction models to understand the future impacts of climate change on 

installation energy consumption. This exploration requires an understanding of the 

impact of climate on energy consumption, modeling types, and whether skillful models 

can be created using climate data. With a skillful model, not only can the most influential 

inputs be identified, but the model can be applied in a forecast mode using climate 

projections to understand long term trends in energy consumption.   
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1.2 Problem Statement 

 Within the Air Force, installations are required to submit annual energy budgets 

to the Air Force Installation Management and Support Center (AFIMSC) which, in turn, 

combines and submits an enterprise estimate as part of its comprehensive operational 

budget to Congress for approval. Installations typically use the prior-year energy use as 

the estimate for the next year’s energy consumption, adjusting only for utility rate 

inflation and mission changes, such as new mission beddown, if necessary. If actual 

consumption outpaces predictions at the enterprise-scale, the deficit is taken from the Air 

Force’s Facility Sustainment, Restoration, and Modernization (FSRM) budget. Due to 

chronic overestimation, AFIMSC is considering holding installations accountable for 

energy use overestimates (Personal communications, AFIMSC/RMAO). Accountability 

could take the form of direct deductions from installation-level FSRM funds if a positive 

difference between consumption and predictions exceeds a pre-determined error 

threshold. Many installations are ill-prepared to produce skillful predictions and forecasts 

of energy use, as energy managers typically lack the ability to account for stochastic and 

pseudo-stochastic variability in their estimates [1].  

1.3 Research Objectives 

 Given the intent of this thesis, which is to provide an understanding of the impact 

of future climate change to military installation energy consumption, the following 

research objectives are as follows: 

1. Review the existing literature to identify the components and methods of developing 

climate-informed energy consumption prediction models. 
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2. Determine the influence of climate inputs on the military installation energy 

consumption prediction modeling and whether skillful models are achievable using 

climate inputs. 

3. Determine forecasted trends for total energy consumption, and its implications, for 

WPAFB using climate projections generated through the 21st century. 

1.4 Thesis Organization 

This thesis follows a scholarly format in which chapters 3 and 4 have been 

prepared as stand-alone journal publications. In Chapter 2, “A Literature Review of 

Approaches for Facility to Enterprise-Level Energy Consumption Prediction and Forecast 

Modeling Under Non-Stationary Climate and at Multiple Temporal Scales,” an overview 

of the existing literature on energy consumption modeling with climate factors is 

conducted. This chapter highlights the variation of approaches and inputs in the modeling 

of energy consumption along with gaps in the existing body of knowledge.  

Chapter 3, “An Unbiased Climate-Informed Tool for Campus Energy Policy 

Development and Budget Predictions,” fills several gaps in the existing body of 

knowledge by developing an energy prediction model for a campus-sized community 

(WPAFB). Additionally, bias correction and multicollinearity reduction techniques are 

incorporated in the model development framework alongside an extensive list of open-

source climate data. This study aims to determine if skillful energy prediction models can 

be created solely using open-source climate data and uncovers how climate variables 

impact the skill of the energy prediction models. The paper then discusses the model’s 

significance to energy managers and introduces the tradeoff of model skill and 
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complexity. At the time this thesis is submitted, this manuscript is under review with 

Applied Energy. 

Chapter 4, “Climate-Informed Energy Consumption Projections for Campus 

Policy Development and Budget Decisions,” applies the findings of Chapter 3 and 

climate projections to forecast energy consumption for WPAFB through the year 2100. 

The associated changes in cost due to changing climate are determined and discussed, 

along with how these forecasts can be used to inform management decisions. At the time 

this thesis is submitted, this manuscript is a working paper. 

Finally, Chapter 5 outlines conclusions and suggests follow-on research to expand 

upon the research. 
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II. A Literature Review of Approaches for Facility to Enterprise-Level Energy 

Consumption Prediction and Forecast Modeling Under Non-Stationary Climate and 

at Multiple Temporal Scales 

2.1 Introduction 

Due to the impact of greenhouse gas emissions on climate, the international 

academic community has allocated time and resources to the identification and 

quantification of potential risks to businesses, governments, and communities, that stem 

from extreme events or gradual trends in climate. One key area of research involves 

gradual impacts on energy. Energy consumption is one of the highest, “must pay” costs at 

any organizational size. In 2017, the United States of America (U.S.) used 97.6 trillion 

BTUs of energy totaling $1.1T, or 5.8% of Gross Domestic Product. More specifically, 

residential, commercial, and industrial sectors spent $224B, $201B, and $359B in energy 

costs in 2017, respectively [4]. As such, accurate predictions of future energy costs are 

important in informing organizational and facility operating budgets, as are policies and 

technologies to mitigate potential energy cost variability. Overestimating energy demands 

wastes resources and may lead to unnecessary energy infrastructure expansion. Also, 

underestimation can result in failures and shortages [5]. Additionally, energy prediction 

accuracy may provide facility managers confidence when planning other budget items.  

Researchers have developed climate-driven prediction models, of varying skill, to 

determine future energy costs [5]–[7]. The underlying connection between facility energy 

and climate factors stems from electrical energy used for heating and cooling: since 

heating and cooling systems adapt facility conditions from the outdoor environment. The 
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most recent Energy Consumption Survey released by the U.S. Energy Information 

Association (EIA) identifies that 61% and 47% of energy consumption for commercial 

and residential facilities, respectively, is electrical energy. Additionally, heating and 

cooling costs account for 32% and 51% of energy consumption for commercial and 

residential sector facilities, respectively [8]. 

Empirical models are widely used to predict energy use at multiple spatiotemporal 

scales [5], [7], [9]–[14] and are generally informed with the following aspects: forecasted 

climate data, historical energy data, which are climate models conditioned on likely 

greenhouse gas emissions scenarios enable forecasting of natural and human systems 

[15]. A variety of climate projection models exist, including the Global Change 

Assessment Model, which is developed by the Joint Global Change Research Institute 

and recognized by the Intergovernmental Panel on Climate Change (IPCC) [16]. Once 

statistically significant regressive relationship between historical climate variables and 

energy consumption has been established in a hindcast mode, the projected climate data 

is inserted into this model to determine likely future energy use. In the case of RCP, or 

other ensemble predictions, multiple forecasted energy use scenarios are produced. 

Studies using forecasts of future climate to predict end-of-century energy use have found 

similar trends. Predictions spanning the 21st century, show that peaks in demand will 

grow in winter and summer seasons. Also, there will be a period of reduced energy 

consumption approaching the middle of the century as energy consumption decreases in 

the winter season, faster than energy usage increases in the summer. However, by the end 

of the century energy consumption levels will have increased past early 21st century 

levels [13], [14]. 



www.manaraa.com

8 

The bulk of the effort required to predict energy use with climate variables is 

devoted to (1) determining whether supply and/or demand will be analyzed, (2) selecting 

the appropriate spatial and temporal level of analysis, (3) collecting data, and (4) 

selecting a regression technique. These aspects are what create a wide range of research 

in this field [10], [14], [17]–[20]. As such, this paper focuses on a contemporary review 

of these aspects, and specifically as they relate to the relationship between climate and 

energy consumption. 

2.2 Discussion 

2.2.1 Energy Supply v. Demand 

When performing analyses on the effect of climate on energy use, researchers can 

focus on the demand or supply side, or both. The demand side analyses involve 

estimating energy consumption and associated costs; whereas, the supply side takes into 

account production and distribution costs. The bulk of recent research has focused on the 

demand side, because demand side is impacted more by climate [21] and, intuitively, the 

primary way energy users control total energy cost is through demand interventions. 

Also, suppliers tend to adjust their supply based on past demand quantities. With the 

likely increase in summer peak energy demand, additional infrastructure investments may 

be necessary to ensure that the energy generation and distribution systems can meet the 

demand [22].  

Peak temperature across the year is expected to increase 6.3-9% by 2050, driving 

a 10-20% expansion of electrical generation capacity and require billions of dollars in 

infrastructure investments [23]. These increases can be apportioned to climate’s effect on 
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transmission line losses, power plant heating effects, substation heating affects, and 

energy demand. An example of climate change on power plant heating effects includes 

fluctuations in water availability and temperature, which could make power generation 

via fossil fuel or nuclear energy less efficient since water is the primary method to cool 

generators [22]. These are just a few of the areas where the energy supply impacts of 

gradual changes to climate have been analyzed. The level of analysis section identifies 

specific temporal and spatial scales that could be beneficial in determining energy supply 

and generation predictions. Further explanation of the impacts of changes in climate are 

discussed. 

2.2.2 Level of Analysis 

2.2.2.1 Temporal 

The level of analysis refers to the temporal and spatial scales or resolutions at 

which climate-driven energy prediction research is conducted. Temporal analyses are 

grouped in four categories: very short-term (VST), few minutes ahead to a few hours 

ahead; short-term (ST), one day to two weeks ahead; medium-term (MT), two weeks to 

three years ahead; and long-term (LT), three to fifty years ahead [24]. 

Each temporal level holds value for different aspects of utility services [10]. 

Improved forecasting enables power system operators to make better informed decisions 

concerning “supply planning, generation reserves, system security, dispatching 

scheduling, demand-side management, and financial planning,” to name a few [25]. VST 

forecasts are particularly useful for real-time scheduling of electricity generation, load 

frequency control, and demand response. These forecasts are crucial to business 
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operations of retailers, power marketers, and trading firms [26]. VST provides energy 

security to consumers by highlighting sub-hourly periods where supplemental power may 

be required [27]. Moral-Carcedo and Pérez-García [28] utilized the VST level of analysis 

to analyze the sensitivity of electricity load to the "rest" and "active" hours of the day 

[28]. The study finds that at lower temperatures, electricity demand increases 

significantly more per degree Celsius drop during "rest" periods than "active" periods. 

This relationship is similar, but less significant, for higher temperatures; however, 

electricity demand decreases more per degree Celsius drop in “rest” periods than in 

“active” periods. This could allow power plant managers to more efficiently allocate 

resources and manpower during rest and active periods of the day based solely on 

temperature forecasts. 

ST forecasts are particularly essential for the operations of the power market as a 

whole; inaccurate ST forecasts result in large financial losses throughout the market [25]. 

Xie and Hong [29] utilized week-ahead projections of energy consumption in the New 

England region of the U.S. to determine the impact of wind speed meteorological 

variables on a model's predictive ability. It was found that wind speed, when coupled 

with temperature-only models, adds skill in a hindcast mode. The New England energy 

market may be able to increase the accuracy of energy consumption expectation by using 

models that include wind speed. Higher accuracy could translate into less wasted energy 

production and fewer monetary losses. 

MT forecasts primarily aid fuel supply scheduling, utility maintenance operations, 

and contract negotiations with users, as this level of analysis encompasses month, season, 

and year(s)-ahead predictions [10]. For instance, De Felice et al. [11] reported that data 
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obtained before and during May for Central and Southern Italy produces significant and 

skillful predictions for that year’s summer electrical energy consumption. This method of 

prediction could provide more surety to the Central and Southern Italian energy supply 

utilities in supply planning, maintenance, and contract negotiations. 

Finally, LT forecasts are particularly beneficial for informing capacity expansion, 

capital investment, revenue analysis, and budgeting [30]. Wenz et al. [31] used climate 

models adapted from the RCPs to conduct a LT analysis of the expected change in daily 

peak energy load across Europe for the remainder of the 21st century. The study found 

that a polarization effect occurs where northern countries are likely to experience a 

decrease in daily peak load, while southern countries may experience an increase by the 

end of the century. Research using LT forecasts may allow countries on both sides of the 

polarization, and their respective power generation utilities, to begin planning for 

potential demand changes. 

2.2.2.2 Spatial 

Existing studies evaluate model skill at various spatial scales: building, 

state/regional, and national/multinational. The determination of spatial scale is primarily 

driven by data accessibility or the specific focus of researchers, for example, impact of 

climate variables, new method development, the sensitivity of models to location, etc. It 

is well documented that the effects of climate change vary spatially [6] and therefore, 

models are calibrated to a specific climate zone, and then tested across climate zones to 

determine model exportability. 
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 One approach used at the building-level involves the sensitivity of energy to 

changes in location. De Rosa et al. [18] modeled a standard residential building in Rome 

and Milan Italy and exported the model to multiple climate regions throughout Europe. 

Wang et al. [32] performed a similar analysis for a medium-sized commercial office 

building within different climate zones in the U.S. These studies utilize building-level 

analysis to more simply test the skill of their models for a single facility type, knowing 

that the effects of changing climate will differ across each climate region. Another 

approach is to obtain information about multiple building types. Dirks et al. [12] utilized 

data from the U.S. Eastern Interconnection (EIC) power grid, along with building energy 

modeling software containing approximately 26,000 facility types, to model the entire 

EIC region: spanning multiple climate regions within the U.S. This data was then utilized 

to inform facility-level energy mitigation and savings techniques. 

The next spatial scale is the regional or state level. It encompasses multiple towns 

or cities potentially across multiple climate zones. Analysis at this level is common since 

data is readily available from energy providers, as they operate regionally and collect 

extensive statistics. Cities and states use these statistics to drive policy decisions. Zhou et 

al. [14] utilizes disaggregated state-level energy data, disaggregated to business sectors, 

to better capture the spatial heterogeneity of building energy use within each state. 

Mukherjee and Nateghi [7] focused on energy consumption within Florida. Later, in 

Mukherjee et al. [19], models developed by Mukherjee and Nateghi [7] were utilized 

across multiple states to test the model under a diverse array of climate conditions. 

The final level of analysis is studies performed at the national or multinational 

scale. One of the main areas of value for studies at this scale is the data collection. In 
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many cases, a nation will have multiple power grids and generation facilities: both 

privately and publicly operated. Municipalities may receive energy from multiple 

providers which may make data collection more [33]. Collecting energy data across 

multiple countries is even more difficult. It is also possible that multiple climate zones 

exist within a single nation, like the United States, or multiple districts of a country, 

which must be accounted for. However, on a multinational scale, geographical location 

can be accounted for as long as countries observed are either small enough to encompass 

one or few climate regions, or the range of countries encompasses a large enough area 

across the globe. Wenz et al. [31] gathered electrical energy consumption data from 

across Europe to develop their wide-reaching study. It was effective in accounting for 

different climate regions because the study includes countries close to and farther from 

the equator. 

2.2.3 Data Collection 

2.2.3.1 Energy Data 

As mentioned in the previous section, accessibility to data is important and, at 

times, drives decisions within studies, for example, the temporal or spatial scale that a 

study can be performed. In some cases, energy data is readily accessible, such as first 

world countries, where asset management and “big data” collection are widely utilized. 

Chandromawli and Felder [6] identified that there is a lack of research in energy 

consumption predictions for developing countries [6]. The probable cause is a lack in the 

amount and quality of historical data.  
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2.2.3.2 Climate Data 

There are a variety of climate variables to consider for energy consumption 

prediction models. Most modelers seek to balance forecast interpretability and skill, 

though they initially take an exhaustive approach to identifying potential climate drivers, 

particularly for statistical models. As with energy data, past analyses have been restricted 

based on accessibility. In cases of limited access to data, variables are selected based on 

intuition or expertise in a specific area [5]. In cases of limited computational capacity, the 

ability to perform exhaustive analyses may be limited. However, existing literature has 

highlighted specific key climate variables, which may help researchers limit their search 

space. The following section provides additional detail on past research that has 

identified notable climate drivers including: temperature, relative humidity, cloud cover, 

precipitation, wind speed, and irradiation.  

Temperature is the most intuitive and widely utilized climate variable for 

predicting energy consumption [11], [29]. One of the most important aspects of ensuring 

comfort in a facility is the control of temperature. This climate variable has been utilized 

in a variety of ways throughout energy prediction literature. This is because temperature 

is measured in a variety of ways: including, dry bulb temperature (most common), wet 

bulb temperature, and dew point temperature. Dry bulb temperature is the ambient air 

temperature when not subject to air moisture. Wet bulb temperature is the ambient air 

temperature that takes into account the cooling effect of moisture evaporation. Dew point 

temperature is the temperature where air vapor begins to condense out of the air (a good 

indicator of relative humidity). With the implementation of more advanced regression 
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techniques, studies have recently recorded accurate predictions that incorporate stand-

alone temperature variables [7], [19], [34]. 

However, temperature has also been modified using degree day methodology 

(DDM) to also be incorporated into energy predictions. The DDM finds the difference 

between the daily temperature and a predetermined facility “bliss” point (65o F is the 

accepted value) [9]. If the actual air temperature is above the "bliss" point, the difference 

is the amount of cooling degree days; thus, modeling the need for cooling. If the actual 

air temperature is below the "bliss" point, the difference is the amount of heating degree 

days; thus, modeling the need for heating.  The primary argument against the DDM is the 

setting of a "bliss" point. In reality, not every facility has a temperature set at 65o F and 

the setpoint may change throughout the day, thus adding uncertainty to the model from 

conception [9]. Additionally, the DDM does not account for the ventilation requirement 

of a facility, which could account for 2-3% of a facility's total energy use [12]. 

Temperature has also been used to normalize climate variables. Researchers have 

used index variables to convert other climate variables to temperature [10], [29]. For 

example, Apadula et al. [10] accounted for relative humidity and windspeed using heat 

and wind-chill index variables, respectively. 

Relative humidity is the measure (percentage) of water vapor saturation in the air. 

This variable has appeared in multiple recent studies [10], [12]. The need for 

incorporating those variables that affect ventilation is partially accounted for using 

relative humidity, as the human production of water vapor with breath necessitates new 

conditioned air while expelling moist air from the HVAC system. There is an apparent 

similarity between relative humidity and the measures of wet bulb and dew point 
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temperature; relative humidity is specifically moisture centric. However, this relationship 

hints at potential multicollinearity when used together in models; principal component, 

higher order, or non-parametric analyses would be required to account for this [35]. 

Cloud cover, though not widely utilized, is another variable used in energy 

consumption prediction [10]. This variable is usually measured with cloud fractions, 

where 0/8 is equivalent to clear skies and 8/8 is equivalent to completely overcast skies. 

Apadula et al. [10] utilized cloud cover as it relates to facility lighting, where, the more 

cloud cover there is, the more facilities will need to use their lights (interior and exterior). 

Cloud cover could potentially have an impact on the effect of solar radiation and the 

heating of a facility's envelope.  

Precipitation has shown varying impact across studies. There are a few studies 

that have found precipitation to be insignificant in energy prediction models [36], [37]. 

However, more recent studies have identified precipitation as key to the predictive ability 

of models [7], [19]. As such, the effect of precipitation requires further exploration. 

Intuitively this climate variable would provide a similar effect to how moisture makes 

wet bulb temperature read lower than dry bulb temperature. In other words, precipitation 

provides a cooling effect for facilities. 

Wind Speed has been highlighted in a variety of studies as being a significant 

climate variable in predicting energy consumption. Like precipitation, Mukherjee and 

Nateghi [7] touted wind speed as being a key predictor of energy consumption. In some 

cases, wind speed is the second most influential climate variable [19]. Further, Xie and 

Hong [29] finds that models that incorporate wind speed with temperature outperform 

other benchmarked models.  
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Solar irradiance is a measure of the Sun’s radiant energy. Irradiance impacts 

energy usage by striking and ultimately heating a facility’s envelope. De Rosa et al. [18] 

find that irradiance begins to have an impact on energy consumption as the number of 

cooling degree days decreases. To account for the impact irradiance, [18] adapted DDM 

calculations. However, only one form of irradiation is utilized by [18]. Al-Bayaty et al. 

[17] incorporated seven different measures of irradiation into a machine learning model, 

including global horizontal, direct normal, diffuse, total surface, direct surface, and 

diffuse surface irradiation. This variety of measures along with the projected increase of 

irradiant magnitude over time makes irradiation’s inclusion in energy prediction 

calculations important moving forward [38]. 

2.2.4 Regression Modeling 

The next piece needed for generating energy use predictions is regression 

modeling. Chandramowli and Felder [6] presented a review of energy consumption 

methods, where four commonly used regression modeling methods were identified: 

multiple linear regression, bottom-up energy accounting, fuzzy regression, and artificial 

neural networks. These and three more recently utilized methods are reviewed in this 

section. 

Multiple linear regression is an extension of simple linear regression; however, 

multiple predictor variables are linearly related to the response variable. In Vu et al. [39], 

backward elimination regression analysis was used to determine the climate and energy 

relationship. Backward elimination involves inserting all possible predictor variables into 

the multiple linear regression model, and systematically eliminating variables that are not 
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significant. A similar approach can be used for higher-order terms if they have not 

already been incorporated. The unavoidable occurrence of multicollinearity in climate 

data was accounted for by using variance inflation factor (VIF) and the consequent 

elimination of redundant variables. 

Bottom-up energy accounting collects energy demand data from building 

equipment and appliances across different types of facilities. This data is then aggregated 

to the building, and potentially city, level to determine building level climate change 

impacts. This type of modeling is beneficial when extrapolating across certain building 

types across climate zones to determine the differing spatial impacts of climate change 

[40]. Here, the relationship between climate variables and energy consumption is 

captured in the appliance and equipment energy system readings.  

Fuzzy regression analysis is a widely utilized derivative of linear regression that 

relaxes the assumptions and requirements of linear regression. As aptly stated by [41], 

“the complexity of real-life problems often makes the underlying (linear) models 

inadequate, since information is frequently imprecise in many ways.” The ambiguity of a 

complex system is expressed using “fuzzy parameters” or probability distributions, which 

correspond to the “fuzziness of the system” [42]. Other methods of bypassing the 

parametric requirements of multiple linear regression have been conceived and are 

discussed in the remaining models. 

The purpose of an artificial neural network (ANN) is to mimic the inner workings 

of the human brain. The value of ANNs come from their speed and simplicity in 

extracting non-linear relationships to develop the desired outputs. ANNs can 

simultaneously test many combinations of a variety of inputs to find these outputs [20]. 
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There are also ways for the network to reincorporate output results back within the 

network. Ismail and Abdullah [34] utilized a back-propagation ANN by inputting 13 

socioeconomic and weather type factors to predict electricity demand in Malaysia. 

"Back-propagation” refers to the ANN feeding the output error back through the network 

for updates to be made until the desired adjusted output is achieved [20]. Ismail and 

Abdullah [34] found that hybridized with principal component analysis (which corrects 

for multicollinearity) this model outperformed other common model types. Al-Bayaty et 

al. [17] analyzed the performance of multiple machine learning models in predicting ST 

energy demand using meteorological data and found that the ANN model was one of the 

two top performers.  

The other top performer identified by [17] was automated decision tree analysis. 

A type of decision tree analysis was validated by [7] in comparing the usage of degree 

days and dew point temperature in predicting power consumption for the state of Florida. 

In this study, a Bayesian additive regression trees (BART) model was compared against 

and surpassed generalized linear, additive, regressive, and other decision tree-based 

models in predictive ability. BART is a non-linear, non-parametric statistical learning 

method where a data space is split into subregions and simple models are fitted to each 

subregion. Upon correction for covariates (via splitting), the subregions are compiled to 

form the final model. The value of this model lies in its freedom from parametric 

assumptions (granting the model better prediction capability), is robust against outliers, 

and is fully probabilistic (allowing it to yield full distributions of predicted response 

values). However, its non-parametric nature makes results more difficult to interpret [7]. 
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This method was later utilized by [19] to show the asymmetry of sensitivity to climate for 

different energy demand intensity levels. 

Support vector regression uses non-linear mapping to project data onto a higher 

dimension space, thus simplifying regression [11]. De Felice et al. [11] specifically 

utilized support vector regression, with the addition of principal component analysis, to 

explore the high-dimensionality of its input data and exploit all possible patterns for 

forecasting. Son and Kim [5] used a hybrid form of support vector regression to precisely 

forecast month-ahead electricity demand in the residential sector. Fuzzy-rough particle 

swarm optimization (genetic algorithm type optimization) and support vector regression 

were hybridized to both optimize regression model variables and account for cyclical 

trends. This method was shown to outperform ANN, auto-regressive integrated moving 

average, multiple linear regression, and other previously proposed predictive models in 

the following error types: mean absolute percentage error, mean absolute error, root mean 

squared error, and mean bias error. 

 The final reviewed model is the autoregressive distributed lag (ARDL) 

model. ARDL has been lauded as "the major workhorse in dynamic single equation 

regressions" particularly because of its error-correction ability [43]. In other words, it 

skillfully accounts for the turbulent and cyclical nature of climate and socioeconomic 

variables. This model has been effectively utilized in determining the ST and LT impacts 

of climate on energy demand in Australia by [13]. 
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2.3 Limitations and Future Research 

One limitation within the current literature is data accessibility issues. As 

previously referenced, global changes in climate will affect each climate region 

differently. As such, it is important to include not only meteorological variables that have 

been supported with literature, most notably some form of temperature, but also a variety 

of variables that capture the uniqueness of a given geographical area. Apadula et al. [10] 

faced this issue with meteorological data and must use only temperature (assumed to be 

dry bulb temperature), relative humidity, wind speed, and cloud cover because of 

availability. Son and Kim [5] were pointedly more exhaustive with climate variables, 

identifying that some variables were not analyzed because the data was not available for 

the entire period of their analysis. Though the variables selected in both of these studies 

are supported by or were chosen because they were supported by the existing body of 

knowledge, they are not as exhaustive as they could be.  

Chandramowli and Felder [6] exposed a gap in the literature regarding analyses 

for under-developed and developing economies. Even today the frequency of studies in 

these economies is low. These countries are likely in the process of building their asset 

management capabilities and may not have the clean and high-quality historical data 

necessary to develop in-depth, accurate analyses of energy trends. However, researchers 

should continue seeking opportunities to provide these analyses though it may take more 

time for under-developed and developing economies to obtain the necessary data 

resources.  

Another limitation is the lack of studies at the campus level of analysis. The 

challenge of analyses at the campus level is energy data accessibility. Some 
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municipalities do not have a singular method of procuring energy. Therefore, multiple 

energy providers may serve the same city or town [33]. Analyses at this level would 

require more preliminary effort to collect and compile the necessary energy data, 

especially for smaller cities or towns. Studies that provide the closest thing to the campus 

level of analysis are those that either aggregate or disaggregate energy data from the 

facility or state/region level to the appropriate level [12], [18], [32]. 

Although briefly mentioned in this review, principal component regression (PCR) 

has not been fully utilized for its ability to counteract multicollinearity. Often 

meteorological variables overlap in explaining variance for response variables. For 

example, there are three types of temperature commonly measured (dry bulb temperature, 

wet bulb temperature, and dew point temperature) and regressing all of them together 

would result in biased results. PCR is a combination of principal component analysis and 

multiple linear regression. This method can extract the unique contributing aspects in the 

relationship of independent variables and the dependent variable and regress based on 

those aspects. Principal component regression is effective because it reorients regression 

models to highlight patterns (called components) rather than input variables. This is done 

by normalizing variables to capture the multidimensional trends of the error within the 

model. Upon transforming the trends into linearized components, the original variables 

are correlated to each component to evaluate which variables are, in fact, most influential 

to the model [44]. Unlike in Vu et al. [39], this method does not remove entire variables 

that appear redundant, but discards redundant components of each variable and pulls the 

unique qualities from even the most similar variables to better explain relationships with 

the response variable. 
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 Several of these limitations provide a launching point for the thesis 

research herein, where a predictive model and forecast of a military installation’s total 

energy consumption is pursued. This research will address data availability by utilizing 

long-established meteorological data archives, such as the National Oceanic and 

Atmospheric Administration, to create an extensive list of climate variables. The campus 

level of analysis is achieved by the compilation of energy data from Wright Patterson 

AFB, which functions at this level. Finally, cross-validated PCR is applied through the 

predictive model’s development framework to account for bias and multicollinearity.   
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III.  An Unbiased Climate-Informed Tool for Campus Energy Policy Development 

and Budget Predictions 

3.1 Abstract 

Climate variability is an external factor that creates energy demand uncertainty 

and makes energy consumption modeling complex. Poor predictions can lead to energy 

overages resulting in the need to borrow funds from fixed operations and maintenance 

budget areas. In order to make data-driven management decisions, energy managers 

require consumption prediction models that account for climate, and that can skillfully 

and simply anticipate energy consumption. This research uses a statistical model-based 

approach and open-source climate data to predict hourly energy consumption for a 

campus-sized community (population: 30,000). The skill of several model configurations, 

informed with combinations of consumption periodicity, climate, and temporal state 

variables, are tested. The modeling framework consists of a cross-validated principal 

component regression followed by post-prediction statistical bias correction. 

Deterministic prediction skill is measured by mean absolute percentage error (MAPE) 

and contingency tables. Ensemble predictions are created from the model error 

distribution and categorical skill is determined using ranked probability skill score 

(RPSS). Deterministic hindcasts explain more than 73% of variability in hourly energy 

consumption. The top-performing model achieves an RPSS of 59% and is skillful year-

round. The cumulative results suggest that incorporating forward-looking projections 

could be useful for long-term utility policy development and budgetary planning when 

coupled with price forecast models. 
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3.2 Introduction 

Climate variability is an external factor that causes energy demand uncertainty 

and makes energy consumption modeling complex. Poor predictions can lead to energy 

overages resulting in the need to borrow funds from fixed operations and maintenance 

budget areas.  

Energy managers require models that can skillfully and simply predict energy 

consumption in order to make data-driven management decisions that inform policy and 

advocate for energy operating budgets. Managing energy at the campus level is 

particularly difficult because available resources and funding must be distributed across 

all facilities and infrastructure [45]. If campus energy managers can skillfully predict 

levels of performance, then they can bolster asset resource and funding resilience.  

Due to the impact of greenhouse gas (GHG) emissions on climate, many 

international organizations and institutions have allocated time and resources to identify 

and quantify the potential risks to businesses, governments, and communities that stem 

from extreme events or gradual trends in climate. One key area of investigation is gradual 

changes in climate, and its impact on energy consumption [5], [9], [10], [12]–[14], [28]. 

For example, Zhou et al. [14] model the impact of changing climate across the 21st 

century for United States heating and cooling, finding that heating energy demand should 

drop gradually for all states, but the inverse will happen for cooling energy demand. 

Emodi et al. [13] study electrical energy consumption in Australia and finds that 

electrical energy consumption may slightly decrease in the middle of the 21st century 

before increasing and eventually surpassing current energy consumption levels due to 

internationally accepted climate change projections.  
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Energy is an important recurring and variable cost for any organization or sector, 

independent of size [7], [9], [10], [17], [18], [38].  For example, studies such as[9] Amato 

et al. [9] focus on regional energy impacts due to spatial differences in energy 

infrastructure, while De Rosa et al. [18] focus on facility impacts and policies designed to 

bring about relatively quick energy savings. Residential, commercial, and industrial 

sectors spent $224B, $201B, and $359B on energy in 2017, respectively [4]. In a national 

context, United States of America energy users consumed 97.6 trillion Btus at the cost of 

$1.1T, or 5.8% of gross domestic product. 

Applying energy consumption modeling at the campus, or organizational, level 

has received little attention. As the owner of 800 military installations that operate at the 

campus level, Department of Defense (DoD) installations provide a unique opportunity to 

apply statistical modeling at such a scale. Despite broader federal action, the prospect of 

changing climate has driven the U.S. Congress to question the resilience of DoD 

installations and its operations. Consequently, Congress tasked the DoD to investigate 

climate-change-driven impacts on many aspects of its asset and mission portfolios [1], 

[2]. As the U.S. Government’s largest operational and facility energy user, the DoD must 

consider how changing climate may affect energy demand and use patterns [3]. Accurate 

predictions of future energy costs are essential for informing organizational and facility 

operating budgets, developing use and energy management policies, and integrating 

technologies to mitigate potential energy cost variability and achieve energy savings.  

Despite the contributions of the aforementioned research studies, there is limited 

reported research that: (1) utilize various bias mitigation techniques like cross-validated 

principal component regression (PCR) and statistical correction, and (2) evaluate energy 
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consumption at the campus level. Accordingly, the objectives of this research aim to fill 

several knowledge gaps in climate-informed energy management. First, this work will 

determine whether a climate-informed statistical approach is skillful in predicting 

historical campus-level (multi-facility) energy use. Few studies exist that focus on 

statistical modeling of organizational-level energy use and fewer have collected historical 

data corresponding to all operations of the specific organization or campus. The second 

objective is to test different model configurations to identify the value of climate and 

other relevant predictors in explaining variation in energy use. Though an extensive list 

of input variables is initially desirable, simplified yet skillful models are those most 

desirable to energy managers. A case study is used to calibrate the models herein. 

However, the generalized framework is flexible such that any number of continuous or 

categorical independent variables can be regressed. 

 This research uses observed, campus-level, total energy consumption data 

and a variety of open-source climate data to create various energy consumption 

prediction models using combinations of differing input types to achieve these objectives. 

Additionally, cross-validated PCR and post-prediction statistical bias correction are 

adopted as methods to create deterministic predictions, and account for independent 

variable multicollinearity and model bias. After the initial models are developed and 

tested, a lean model is developed using the most statistically influential input variables 

from the most skillful model to determine the effects of limiting input variables. This 

model is a tool to aid asset managers in planning operations and energy infrastructure. 
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3.3 Background 

Statistical, climate-driven prediction models have been used across many fields to 

gain insight into past and future impacts on operations and to inform policy. Models 

applied to the management of built and natural systems are applied broadly and produce 

results with varying degrees of deterministic and probabilistic skill [35], [46]–[48]. For 

example, Delorit et al. [35] model streamflow in a Chilean river basin and uses ranked 

probability and categorical hit skill scores to determine model skill; whereas, Zeng et al. 

[48] model the wind speed and solar irradiation in a Yangtze River estuary and uses 

Akaike Information Criterion, adjusted coefficient of determination, and mean squared 

error to determine model skill Similar models have been developed for the energy sector 

at a wide range of temporal, spatial, and organizational scales, and are most commonly 

calibrated to evaluate energy consumption with mention of climate impacts [5], [9]–[11], 

[13], [36]. 

Many climate variables have been shown to provide value in energy consumption 

prediction models. In cases of limited access to data, variables are selected based on 

intuition or expertise in a specific area [5]. In cases of limited computational capacity, the 

ability to perform exhaustive analyses may be limited considering that energy managers 

are typically not modelers or climate scientists. However, existing literature has 

highlighted specific key climate variables that may help researchers limit their search 

space, including temperature [7], [9]–[12], [14], [17], [19], [29], [34]; relative humidity 

[10], [12], [17]; cloud cover [10], [17]; precipitation [7], [19], [36], [37]; wind speed [7], 

[17], [19], [29]; and irradiation [17], [18], [38]. This study builds on these previous works 
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and investigates a multitude of climate factors for their explanatory power in predicting 

energy use. 

The spatial scale of energy prediction analyses is primarily driven by data 

accessibility or the specific focus of researchers, for example: the impact of climate 

variables, new method development, or the sensitivity of models to location. The effects 

of climate change vary spatially; therefore, many models are calibrated to a specific 

climate zone, and once optimized, tested across climate zones to determine model 

exportability [6]. With this in mind, the highest resolution energy data available and an 

exhaustive list of climate variables is collected for this study.  

Energy prediction analyses occur anywhere between facility to multinational 

scales. At a facility-level specific building types have been modeled and exported to 

various climate zones to understand spatial impacts of a changing climate on those 

facility types [18], [32]. Few organization or campus-level studies exist, though bottom-

up facility aggregation methods are generally used to model this level. Dirks et al. [12] 

utilize building energy modeling software, containing approximately 26,000 facility 

types, to model entire geographical regions of the U.S. and inform energy mitigation and 

savings techniques. These methods require robust datasets. The difficulty of campus-level 

analyses lies in capturing the different use regimes between facilities and accessibility to 

facility-level data, thus limiting these analyses when assumptions are made. Bottom-up 

efforts, which rely on robust facility-level datasets to model energy usage of each facility 

are difficult to calibrate, time-intensive to construct, and are highly stylized to the 

campuses for which they are developed. Additionally, some municipalities do not have a 
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singular method of procuring energy; therefore, multiple energy providers may serve the 

same city or town, making the collection of the data burdensome [33].  

Like facility-level models, state- or region-level models can be exported to other 

states and regions to test the model’s stability under a diverse array of climate conditions 

[7], [19]. Additionally, state-level data can be disaggregated to better understand business 

sector energy consumption and to capture the spatial heterogeneity of building use within 

each state [14]. For national or multinational scale, the difficulty lies in data collection. 

Wenz et al. [31] gather electrical energy consumption data from across Europe to develop 

their wide-reaching study and provided a better understanding of Europe’s predicted peak 

energy consumption under climate change.  

Finally, Chandramowli and Felder [6] present a review of energy consumption 

prediction methods that found multiple linear regression to be one of the prominent 

techniques [6]. Other technique types include fuzzy regression [41], Bayesian additive 

regression trees [7], [19], support vector regression [5], [11], and artificial neural 

networks [17], [34]. However, no studies have leveraged principal component analysis 

(PCA) with regression, much less with cross-validated multiple linear regression to 

account for multicollinearity and bias present in climate and other predictors. 
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3.4 Data 

3.4.1 Energy Data 

Few studies have focused on creating prediction models and analyses for a 

municipality or campus using that campus’s historical energy data. This is largely due to 

limited data availability and resolution, which hamper statistical significance. For this 

study, energy consumption data were provided by Wright Patterson Air Force Base 

(WPAFB), located near Dayton, OH, across four consecutive years at the half-hourly 

scale, given in kilowatt-hours (1 Oct 2015 - 30 Sep 2019). The scale of these data most 

closely resemble that of a city, manufacturing complex, or medical or university campus. 

WPAFB employs over 30,000 people and includes various operation types such as, 

industrial, commercial, community support, and residential. In all, the data include 

energy demand from approximately 26,500 facilities. In terms of climate conditions, 

Dayton, Ohio is a temperate climate with moderate rainfall throughout the year, warm to 

hot summers, and cool to cold winters. From the time series of the observed data, it is 

apparent that a dominant signal exists, which suggests that periodicity and categorical 

(dummy) time variables could be valuable inputs to energy consumption prediction 

models (Figure 1). 
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Figure 1.  Observed energy consumption timeseries: Four years of half-hourly raw 

observed energy data for WPAFB show a relative periodicity in electricity demand with 

spikes in the summer months due to space conditioning. The tick marks on the horizontal 

axis represent the start of the specific calendar year (i.e., January 01) 

 

3.4.2 Climate Data 

A majority of the climate data used in this prediction framework was retrieved 

from the NOAA Local Climatological Data (LCD) database to include dry bulb 

temperature, wet bulb temperature, dew point temperature, relative humidity, station 

pressure, sea pressure, wind speed, precipitation, and cloud fraction. From the existing 

literature, solar irradiation was noted as potentially impactful but was not available in the 

NOAA LCD database [17], [18]. Therefore, irradiation, along with cloud opacity and 

precipitable water, were obtained from the commercial solar forecasting company Solcast 
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[49]. Incorporating irradiation, opacity, and precipitable water were deemed important to 

ensure a broad analysis of climate’s contribution to energy consumption. 

The energy consumption data was aggregated to an hourly scale because it was 

the finest temporal resolution common across all climate variables. Using a Fourier 

Transform, the underlying periodicity was extracted and time variables representing 

various daily, weekly, monthly, and yearly time-step scenarios were developed as input 

variables. Dummy or categorical time variables can inform energy managers of temporal 

levels at which data should be tracked to produce accurate energy predictions. The data 

was then preprocessed by consolidating input and response variables, removing time-

steps with missing information, and formatting. 

3.5 Methodology 

Statistical modeling techniques are used in many fields for attribution and forecast 

analyses. This research uses combinations of three variable types (climatology, 

periodicity in the underlying energy consumption pattern, and time) in a cross-validated 

PCR to create ensembles of statistically unbiased energy consumption prediction models. 

This process is depicted in Figure 2, where the lighter arrows represent the process being 

repeated for the lean model. Input variable types are combined to produce the following 

models (7): periodicity only, climate only, periodicity and climate, periodicity and time, 

climate and time, and a collective model (combining climate, periodicity, and time 

variables). Testing various input combinations will ultimately determine the model that 

best balances performance and complexity. The skill of each model is determined using 

several standard validation techniques, including mean absolute percent error (MAPE), 
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ranked probability skill score (RPSS), and contingency table exposition. After identifying 

the skill of the best performing deterministic model, a lean model is created by 

incorporating only the most influential input variables, and recompleting the production 

and validation sequence. The purpose of the lean model is to test the skill retention of the 

best performing deterministic model while reducing input variable complexity. This 

entire process is depicted in Figure 2. 

The resulting methodology is intended to be applicable for any location; however, 

this research and resulting models have been calibrated for the area of Dayton, OH, 

where the energy consumption data was retrieved. 

 

 

Figure 2. Systematic framework visualization: numbers correspond to section and 

subsection; black arrows represent the initial model development process, and grey 

arrows represent how the lean model is developed by reusing the initial process 

 

3.5.1 Periodicity and Time Variables 

To isolate the dominant signal in the energy consumption time series, a Fourier 

Transformation was conducted. Fourier Transformation approximates the underlying 

signal of time series data through the superposition of sinusoids. The underlying signal of 
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the observed energy data contained eight sinusoidal components. As components of the 

signal are taken away, the signal captures fewer trends in the observed data [50]. 

Ultimately, six components of the overall signal were selected to represent the periodicity 

of the observed data, because a less complex signal could be achieved while not 

compromising the interannual trends visible in the observed data (Figure 3). 

 

 

Figure 3. Fourier Transformation timeseries; the observed data’s underlying signal is 

captured; larger peaks in energy consumption are visible during the summer periods, 

while smaller peaks occur during winter periods. 
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Through capturing the dominant signal within the observed data, it is apparent 

that categorical time-steps might also be skillful predictors of energy consumption. For 

instance, it appears that, annually, peak energy consumption in summer months reach 

approximately 150,000 kWh. To test this phenomenon, categorical time (“dummy”) 

variables are introduced as input variables. Because of the fine temporal resolution of the 

data, a variety of time variables are included (hour of the day, day of the week, weekday 

vs. weekend, month, heating vs. cooling vs. no-heat-no-cool seasons, and fiscal year).  

 The final list of inputs includes three variable types (climate, periodicity, 

and time), totaling 59 specific input variables. The input types are combined in various 

ways to make the seven models. Only one model, termed the collective model, contains 

all 59 possible input variables. 

3.5.2 Description of the Models 

Six different combinations of input variables, that generate the six models tested 

herein, are analyzed to find the combination of input variables that produces the best 

performing and lowest complexity model. All six models are generated using the same 

framework (described in sections 3.5.3-3.5.5).  

 The periodicity only model contains the Fourier Transformation, or 

underlying signal of the observed energy data, as the only input variable. The climate 

only model contains 12 input variables, including dry bulb temperature, wet bulb 

temperature, dew point temperature, relative humidity, station pressure, sea pressure, 

wind speed, precipitation, precipitable water, cloud fraction, cloud opacity, and 

irradiation. The periodicity and climate model consists of 13 variables, including of all of 
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the variables from both the periodicity only and climate only models. The periodicity and 

time model consists of 47 input variables, including the single variable in the periodicity 

only model and all of the categorical time variables (hour of the day [23], day of the week 

[6], weekday vs. weekend [1], month [11], heating vs. cooling vs. no-heat-no-cool 

seasons [2], and fiscal year [3]). The climate and time model consists of 58 input 

variables, including all of the variables from the climate only model and all of the 

categorical time variables. The last model, the collective model, consists of all 59 input 

variables, including all variables from the periodicity only and climate only models, and 

all categorical time variables. 

3.5.3 Cross-validated PCR 

With the final input variables established, multicollinearity is addressed through 

cross-validation and PCR [51]. Delorit et al. [35] explain that PCR is commonly applied 

in forecasting and hindcasting to reduce both variable dimensionality and 

multicollinearity, and result in a set of principal components (PCs) that represent the 

variance in a set of predictors [35]. First, PCA is conducted where input variables are 

broken down into their PCs. Next, a leave-one-out cross-validated hindcast is undertaken 

across the entire dataset to produce a less biased, deterministic prediction of expected 

energy consumption for WPAFB. Because this form of cross-validation removes the 

time-step being predicted, the percentage of variance explained by the model will 

generally decrease. Furthermore, Jolliffe’s Rule is applied as a PC retention and 

dimensionality reduction technique [52]. Only the most influential PCs for the prediction 

model are retained. The coefficient of variation falls as fewer PCs are retained for the 
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regression. The cumulative effect of the cross-validated PCR is an unbiased and 

conservative variance explained estimate. 

3.5.4 Statistical Correction 

Statistical bias correction, also known as quantile mapping, is prevalent in climate 

forecast modeling [53]–[55]. By comparing the fit of the regressed models to the 

observed data, statistical model bias can be identified and corrected. Statistical correction 

methods account for consistent bias across a model. To correct the models, the 

distribution type of the observed energy data is identified. Using the associated 

distribution parameters, the distribution of the predictions is matched to the distribution 

of the observations using quantile mapping. The resultant outputs are the final 

deterministic prediction models. 

The observed energy data follows a bimodal normal distribution that necessitates 

a uniquely tailored statistical correction process. Normal distribution parameters from 

both distribution “modes” are collected to perform the statistical correction. This method 

requires both the observed and modeled data to be split at a calibrated point while 

maintaining time-step position indexing. Each “half” of the modeled data is corrected 

based on the corresponding “half” of the observed data, and the two “halves” of the 

model are reassembled to produce the statistically corrected model. 

3.5.5 Validation Metrics 

Deterministic model performance is illustrated using mean absolute percent error 

(MAPE). MAPE is commonly used in energy prediction research and established 

thresholds are used to determine the skill of prediction models [5], [28], [56]. When 
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utilizing MAPE, a score below 20 signifies a prediction model of “good” quality. If the 

MAPE falls below 10, the forecast model is said to be of “excellent” quality [57].  

 Uncertainty is incorporated into the finalized models through prediction 

ensemble generation. Ensembles are used to calculate ranked probability skill score 

(RPSS), which is a metric of probabilistic, or categorical, performance and is meant to 

account for uncertainty in the deterministic models’ outputs. First, a reference 

climatology is established by separating the distribution of observed data into categories 

based on the characteristics of the distribution. This becomes the standard against which 

the prediction ensembles are tested. Climatology is scored based on the percentage of 

observed data points that fall within each category, while the prediction model is scored 

based on the number of ensemble predictions that fall in the same category as the 

observed data. For this research, the climatology was created by partitioning the 

distribution into four categories based on peaks and saddle points within the distribution, 

as shown in Figure 4. 
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Figure 4. Observed data timeseries with climatological categories; depicts the chosen 

climatological categories based on the character of the accompanying histogram. Each 

category is not indicative of a single season; however, general seasonal associations can 

be drawn. A majority of the high values occur during the summer and a majority of the 

low values occur in the fall, winter, or spring. The intermediate categories include various 

portions of all seasons. 

 

An ensemble is generated by randomly drawing a value from the deterministic 

model’s error distribution (with replacement), and adding the error to a deterministic 

model outcome. This process is repeated until a randomly drawn error is added to each 

outcome in the deterministic time series. The result is a new ensemble time series, where 

the addition of the error terms is a means of applying uncertainty. The number of 

ensembles generated for each model is determined by the number required to achieve 

RPSS variance <0.01.  



www.manaraa.com

41 

 Ranked probability skill score (RPSS) is a categorical measure of 

ensemble prediction compared to a reference forecast, in this case the climatology 

discussed above [58]. The RPSS uses the mean ranked probability score (𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ), a measure 

of the square differences in the cumulative probability of a multi-categorical ensemble. 

The RPSS ranges from -∞ to 1, where values greater than zero indicate greater skill than 

climatology. RPSS values less than zero indicate that predictions are inferior to 

climatology, and a RPSS equal to zero indicates that the model is equivalent to 

climatology [35]. An RPSS value is generated for each time-step of the hindcast using 

Equation 1, and the median value of all time-steps is reported as the RPSS for the model 

formulation. 

 

𝑅𝑃𝑆𝑆 =
𝑅𝑃𝑆̅̅ ̅̅ ̅̅ − 𝑅𝑃𝑆̅̅ ̅̅ ̅̅

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

0 − 𝑅𝑃𝑆̅̅ ̅̅ ̅̅
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

= 1 −
𝑅𝑃𝑆̅̅ ̅̅ ̅̅

𝑅𝑃𝑆̅̅ ̅̅ ̅̅
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

 

Equation 1 

Where: 

𝑅𝑃𝑆̅̅ ̅̅ ̅̅  = ranked probability score 

 

Contingency tables are leveraged to test the categorical performance of the top 

performing deterministic model. The contingency tables applied in this research are 

separated into the four categories representing climatology, as described in Figure 4. Hits 

are defined as hourly predictions that align with the correct observed consumption 

category, and misses are hourly predictions that do not fall within the same category as 

observed consumption. Extreme misses are defined here as those predictions which miss 

by more than two use categories and are unequivocally wrong. 
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3.5.6 Lean Model Compilation 

Once the skill for each of the seven deterministic models is evaluated, a lean 

model is assembled using only the most dominant input variables from the most skillful 

model. Dominance is determined by correlating the model’s retained PCs with the 

original input variables. The following steps were followed to identify the input variables 

with the greatest signal: 

1) Isolate the top two-thirds of retained PCs. This decision is arbitrary, but 

 serves to illustrate that an energy manager could down-select to the  

  number of PCs desired based on data availability. 

2) Select input variables from each PC with the absolute value of correlation 

 coefficients greater than 0.30. This is done as 0.30 is widely regarded as 

 “moderate” correlation. 

3) Retained input variables are those that occur most often in the remaining 

 PCs. 

The new model is then redeveloped through cross-validated PCR, statistical 

correction, ensemble generation, and skill analysis (see Figure 1). The model’s statistical 

performance is then compared to the initial models to determine the effect of including 

less but the most important information from the larger input variable set. 
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3.6 Results 

The results are organized such that they reflect the order of the methodology. 

First, the effect of statistical correction on the deterministic skill of the models is 

addressed. Next, the predictive capabilities of the models tested are presented and 

compared. Lastly, the performance of a lean model, developed from the top performing 

model of the original six models, is compared to the performance of the original six 

models. 

3.6.1 Bimodal Corrected Models 

It was found that varying the statistical correction splitting points of both the 

observed and modeled data resulted in a different variance explained, and different fits to 

the observed data cumulative density functions (CDFs) and probability density functions 

(PDFs). Through manual calibration of the split points, models resulting in the best fitting 

CDFs were obtained. Figure 5a illustrates the bimodality of the distribution of the 

observed data (blue); however, the modeled data (orange) does not take this phenomenon 

into account. As depicted in Figure 5b, quantile mapping and calibration of the split 

points create a corrected model (orange) that better matches the bimodality of the 

observed data. 
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Figure 5.  Impact of statistical correction on a prediction model; (a) modeled data 

(orange) over observed data (blue); (b) corrected model (orange) over observed data 

(blue); statistical correction adapts the predictive model to better capture the bimodality 

of observed energy consumption. 
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3.6.2 Predictive Capabilities 

Deterministically, the top performing models are the collective and climate and 

time models, as each produces an explained variance of 0.73 (r2) (Table 1). 

Probabilistically, the significance of incorporating statistical correction into model 

development is manifested as a 9% average increase in RPSS across all models, except 

for the periodicity only model (1% improvement), which is likely due to the fact it is 

extracted from the observed data. 

 

Table 1. Model performance metrics  

 

 

Dimensionality reduction compares the number of retained PCs to the initial 

number of PCs for each model. Specifically, it is the ratio of the difference between the 

initial number of PCs and the final number of retained PCs in a model to the final number 
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of retained PCs in a model expressed as a percentage. Reducing dimensionality in a 

model is important because it reduces the complexity of the model and highlights what 

input variables are not necessary to produce the model skillful. In other words, it narrows 

the scope of input variables that energy managers must collect and input into a model. 

A substantial number of PCs are retained for the models with larger input sets 

(collective, climate and time, and periodicity and time). Because the periodicity only 

model contains one variable, there is no reduction in dimensionality, and therefore, the 

PCR process is not useful.  

Additionally, the dominant signals from PCs 1 and 2, which always explain the 

most variance in the underlying input data, are recorded in Table 1. The periodicity 

variable (“FourierTrans”) and dew point temperature (“DewPtTemp”) are consistently 

designated as key signals in the first two PCs of many of the models. Whenever 

periodicity is included in a model, the periodicity variable is notably the most dominant 

signal. When climate is included in a model, dew point temperature is either the first or 

second most dominant signal, which suggests that temperature is also the main feature of 

the periodicity variable. However, the first two PCs of the models are not entirely 

dominated by these two inputs. Solar Irradiation, Wednesday, Thursday, and weekday vs. 

weekend are other notable input variables. Several of the week related time variables that 

emerge as influential are consistent with trends regarding the flow of people onto the 

installation (personal communications, WPAFB security personnel). 

The performance metrics identify that some models do show particularly 

encouraging skill. All models, with the exception of the periodicity only model, produce 

MAPE scores consistent with “very good” prediction/forecast model candidates (< 10), 
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though the periodicity only model is considered “good.” A total of approximately 100 

ensembles for each model formulation were computed to achieve RPSS convergence 

(<0.01 score deviation). Clearly, higher RPSSs stem from models with larger 

deterministic variance explained. Periodicity provides predictive power only when 

coupled with categorical time variables. When paired with the climate variables, 

periodicity provides a slight improvement from the climate only model. And, in the 

collective model, periodicity adds very little improvement; performance is approximately 

the same as that of the climate and time model. This suggests that the information 

provided by the periodicity variable is represented by the climate and categorical time 

input variables. 

 

 

Figure 6. Final Climate and Time model versus observed energy consumption; time 

series and quantile-quantile plot; the single outlier occurs in the summer and is likely due 

to an erroneously high temperature measurement, and the response in energy 

consumption is due to cooling demand 
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Because the climate and time model was the least complex and highest 

performing model, it was used to create two lean models consisting of only those input 

variables with the most dominant signals. After cross-validated PCR, 42 of 58 PCs were 

retained. By correlating PCs to the specific input variables, it was determined that the 

inputs with the most dominant signals include the three temperature variables (dew point, 

dry bulb, and wet bulb) and the time variables weekday/weekend, January, February, 

June, Sunday, Friday, 1100 hours, 1400 hours, 1500 hours, 1600 hours, and 2300 hours.  

Contingency tables are leveraged to test the categorical performance of the top 

performing deterministic model (climate and time). Hits and misses are expressed as a 

percentage of the total number of forecasts in each climatological category. In the 

contingency tables, hits appear along the diagonal from top left to bottom right. It follows 

that misses appear as a divergence from the diagonal. The hit scores align closely to 

model RPSS; however, the extreme miss score is new information, and represents cases 

when the prediction was for low energy consumption, but the actual energy consumption 

was high, and vice versa. The hit score of the best performing deterministic model 

(climate and time model) is 58.6%, and the extreme miss score is 7.9%. Additionally, the 

hit score for the highest and lowest use categories is 72%. While the overall hit score is 

unimpressive, the model’s performance in the extremes is encouraging. If the energy 

manager’s goal is to avoid extreme misses, and maximize skill in predicting extreme use 

times, then the model should be preferred over a climatological analog. 
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Table 2. Median energy consumption value contingency tables for the climate and time 

model (%); regions: L=low values, ML=mid-low values, MH=mid-high values, H=high 

values; green=hit, red=extreme miss 

 

 

 

To further analyze the model’s categorical skill under forecast optimism and 

pessimism contingency tables were developed for the 75th and 25th percentile ensembles, 

respectively. The 75th and 25th percentile contingency tables support what is observed 

through graphical representation (Fig. 6). The deterministic model tends to predict below 

the lowest energy levels and above the highest energy levels. The 75th percentile 

ensemble more accurately accounts for variability in low energy consumption values than 

the median predictions (61.6% → 78.6%), and the 25th percentile ensemble is more 

skillful for high energy consumption values than the median predictions (76.9% → 

85.8%).  

Being that the High and Low categories are likely to be of greatest importance to 

energy managers, the contingency tables for the median predictions can also be readapted 

to consolidate the middle two regions (Mid-Low and Mid-High) to a single category 

because specificity in these regions may not be necessary or important to energy 
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managers. The result is an increased hit score of 67.7% and a decreased extreme miss 

score of 0.17%. The increase can be attributed to the higher accuracy in the new 

“Middle” region due to the consolidation of the Mid-High and Mid-Low regions, and the 

decrease in extreme misses is attributed to the fewer opportunities for values to fall in 

extreme miss categories. 

Though the median prediction values perform well categorically, improved 

predictions can be achieved for the extreme regions using the 75th and 25th percentiles. 

That being said, the results for the median prediction values show that just by knowing 

climate and time variables, we can predict 76.9% of the variability in peak hourly 

consumption can be explained. Using 25th percentile predictions, explained variability 

rises to 85.8%. 

3.6.3 Lean Models 

Two lean models are generated with different combinations of input variables to 

specifically analyze the effect of including categorical time variable types rather than 

only including specific time variables. In terms of model calibration, it would likely be 

just as easy to incorporate all variables in a categorical time variable type as 

incorporating specific categorical time variables. Lean model A consists of 44 input 

variables, including all of the temperature variables (dew point temperature, dry bulb 

temperature, and wet bulb temperature) and only the most impactful time variable types 

(hour of the day [23], day of the week [6], weekday vs. weekend [1], and month [11]). 

For example, since several specific hour-of-the-day variables are noted as being 

impactful, the entire set of hour-of-the-day variables were included in the model. Lean 
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model B consists of 14 input variables, including only the specific inputs with the most 

dominant signals (dew point temperature, dry bulb temperature, wet bulb temperature, 

weekday vs. weekend, January, February, June, Sunday, Friday, 1100 hours, 1400 hours, 

1500 hours, 1600 hours, and 2300 hours).  

Lean model A maintains higher performance results compared to the six original 

models, while lean model B experiences larger drops in performance (Table 3). This 

result occurs because lean model A contains more total input variables than lean model 

B. However, lean model B still outperforms three of the six original models (periodicity 

only, climate only, and climate and periodicity) and performs similarly to the periodicity 

and time model. The scree plot reveals that considerable drops in performance should 

occur for lean model B because nearly 30 variables from the climate and time model are 

not included, and many of those variables each explain around 2% of the total explained 

variance in the climate and time model (Fig. 7). 

 

 

Table 3. Lean Model statistical results 
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Figure 7. Climate and time model scree plot 

 

The results tend to reflect or slightly under-perform what is found in similar 

studies in terms of input variable impact and model skill [5], [7], [19]. However, these 

studies tend to include socio-economic inputs (e.g., population increase, energy pricing, 

etc.), where this study purposefully does not. Additionally, in contrast to existing studies, 

the model developed herein analyzes energy consumption at the campus level using 

campus-level energy data, provides insight on model categorical performance, and 

proposes a framework that thoroughly accounts for bias. 

3.7 Discussion 

The results demonstrate that skillful predictions of hourly campus-wide energy 

consumption can be achieved using statistical models informed with mixtures of 

continuous climate and categorical time variables. Moreover, models can be created with 

techniques (PCR, cross-validation, and statistical correction) that minimize bias and 
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reduce dimensionality. Furthermore, using uncertainty in deterministic predictions, a 

model’s probabilistic skill can be determined. The skill of the proposed framework and 

use of open-access data suggests that energy and facility managers could be well-

positioned to create their own models. The correlation between the regressed PCs 

illustrates that temperature and time variables are the most useful in explaining hourly 

energy consumption. Energy consumption patterns were used to decide which categorical 

time variables to include, while the temperature data was obtained from the open-access 

NOAA LCD database. Both of these variable types require limited effort to obtain. 

However, as the comparison of the Climate and Time model and Lean Model B shows, 

there is a significant tradeoff between reducing dimensionality and maintaining skill.  

Though overall predictive strength is important, accuracy at the highest and 

lowest energy use periods is perhaps of greatest importance to energy managers, who 

must make operational decisions (e.g. load shedding), and make equipment and policy 

recommendations to decisionmakers. For example, predicting peak energy consumption 

can inform energy managers of when peaker generators, or those generators only used to 

compensate for peak energy periods, should be utilized or if energy infrastructure needs 

expansion to support increased demand. Predicting low energy periods accurately can 

inform seasonal decisions to override heating and cooling systems when environmental 

conditions are mild (e.g. spring and fall) [59].  

Through categorical analysis, the best performing model appears to be skillful for 

these extreme energy levels. Additionally, leveraging the most skillful components of the 

75th and 25th percentile predictions is a feasible solution for energy managers seeking to 

maximize peak and low energy use. The model also produces low percentages of extreme 
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misses, where an extreme miss prediction could lead to poor decision making about when 

to load shed or when to centrally heat or cool buildings. 

Energy managers are generally not modelers, and thus tools that are informed 

with readily available data are likely to be favored. Data accessibility, computational 

power, modeling ability, and time availability could be factors in model construction. 

Though models with climate variables tend to outperform less data-intensive constructs, 

managers may favor a periodicity-based model as it only requires the energy 

consumption data itself. Ultimately, both approaches are viable and can produce skillful 

models. 

3.8 Conclusions 

The prospect of a variable climate places accurate impact predictions at a 

premium. To make data-driven management decisions, energy managers require 

consumption prediction models that can anticipate peaks and lows in energy consumption 

skillfully and simply. The methodology herein provides a flexible framework that can be 

adapted to any number of continuous or categorical independent variables, utilizes open-

source data, and extensively accounts for modeling bias. As a result, skillful campus-

level energy consumption prediction models were generated. Each performs skillfully in 

those areas most important for decision-making. By way of contingency tables, it was 

identified that using 25th and 75th percentile predictions can additionally bolster the 

accuracy of peak and low energy consumption predictions. These results validate that, 

rather than paying for hourly/daily modeling capabilities, it is possible for energy 
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managers to fairly predict energy consumption with high skill using open-source climate 

information.  

This research is limited in that the models were calibrated to the singular location 

of Dayton, OH. Future research must be conducted to evaluate the skill of such models 

across a span of varying climate regions to validate its adaptability. This is particularly 

important because the aspects of climate that impact energy use are likely to vary. 

Therefore, exhaustive inclusion of climate input types should be favored in initial model 

development in order to identify which are most impactful in the PCA. However, a 

benefit of the modeling framework developed in this work is that it is exportable. So long 

as the modeler or manager possesses some amount of energy use and climate data, the 

role climate and categorical variables play in explaining energy use can be determined. 

Another limitation is that the selection of split points in statistical correction was 

calibrated manually based on the fit of the modeled CDF on the observed data CDF. 

Based on incremental changes to the split points, an effective amount of statistical 

correction was still achieved through manual calibration. Be it that explained variance 

only changed by approximately +/- 0.01 with changes to the split point in statistical 

correction, applying optimization techniques could be applied to better fit CDFs while 

maximizing explained variance. 

Future research should focus on additional complexity reduction of the models to 

improve uptake potential. Here, there was no precise methodology used to select inputs 

variables for the lean models. Although, the lean models are an approximation of the least 

complex input compilation, following the approach herein may not be conducive to 
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energy managers. However, it is likely that lean models will vary by location due to the 

aspects of climate that influence energy use.  

Finally, a large and potentially conservative number of PCs for the models with 

larger input sets were retained using Jolliffe’s rule. Adopting other rules (e.g. Kaiser’s 

Rule) could further narrow the retained PC count of larger input sets. 

To decide which model is best suited for energy managers, the simplicity and 

accuracy tradeoff must be analyzed. The climate variable temperature is shown to be the 

most influential input data in this research; however, it does require collection and 

processing time. Depending on how energy managers value time and computational 

capacity, utilizing the periodicity and time inputs only may be a better option.  

This study focuses on the calibration and validation of a predictive model.  To 

assess how use patterns and magnitude could change with climate and the degree to 

which historically relevant variables remain useful, future research should run this model 

framework in a forecast mode with future predictions of climate variables. Furthermore, 

applying cost factors to such a forecast could allow managers to budget for future energy 

use rather than react to changes. 

Ultimately, this exploration of campus-level energy consumption prediction 

modeling is one of the first of its kind. Campus to city level decisionmakers require 

energy managers to produce accurate expectations of energy use to plan and budget for 

their daily, and even hourly, operations. These findings demonstrate that proactive energy 

planning through energy consumption predictions at the campus-level can be 

accomplished through accessible, fair, and skillful means. 
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IV.  Climate-Informed Energy Consumption Projections for Campus Policy 

Development and Budget Decisions 

4.1 Abstract 

Climate variability creates energy demand uncertainty and complicates long-term 

asset management and budget planning. Without understanding future energy demand 

trends related to climate intensification, changes to energy consumption could result in 

budget escalation. Energy demand trends can inform campus infrastructure repair and 

modernization plans, effective energy use reduction policies, or renewable energy 

resource implementation decisions, all of which aim to mitigate energy cost escalation 

and variability. To make these long-term management decisions, energy managers 

require unbiased and accurate energy use forecasts. This research uses a statistical, 

model-based forecast framework, calibrated retrospectively with open-source climate 

data, and run in a forecast mode with CMIP5 projections of temperature for RCPs 4.5 and 

8.5 to predict total daily energy consumption and costs for a campus-sized community 

(population: 30,000) through the end of the century. The model suggests that median 

annual campus energy consumption, based on temperature rise alone, could increase by 

4.8% with RCP4.5 and 19.3% with RCP8.5 by the end of the century, and create budget 

deficits of $2.5M and $7.9M, respectively. A probabilistic analysis suggests that end-of-

century projections are relatively certain and will span $7.3 to 7.9M for RCP8.5 

temperatures at the interquartile range. Monthly forecasts indicate that summer month 

energy consumption could significantly increase within the first decade (2020-2030), and 

nearly all months will experience significant increases by the end of the century. The 
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cumulative results reveal annual cost increases monetarily equivalent to building new 

facilities. Overall, the forecast model framework simply and efficiently provides campus-

scale projections that enable energy managers to understand how and when interventions 

should occur and to justify intervention timing and financial decisions. 

4.2 Introduction 

Climate variability is an exogenous, stochastic factor that causes energy demand 

uncertainty and complicates energy consumption modeling. Limited understanding of 

future energy demand trends can leave energy managers ill-prepared to make long-term 

decisions, such as advocating for infrastructure modernization or expansion, making 

facilities more energy efficient, or considering renewable energy resources. Energy 

managers require forecast models to project future energy demand and inform these 

decisions and their budgets. Managing energy at the campus level is particularly difficult 

because resource allocation must be prioritized amongst many facilities [45]. With access 

to future campus energy demand trends, energy managers are better positioned for long-

term decision-making to mitigate the impact of demand and cost fluctuations for campus-

wide operations.   

Many international organizations and institutions have allocated time and 

resources to understanding the future impacts of greenhouse gases (GHG) on climate 

extremes and gradual trends. Future risks to businesses, governments, and communities 

due to these changes are then explored through sectoral models [31], [35], [46], [48]. 

Gradual changes to climate and its forecasted impact on energy consumption is one key 

area of research [7], [9], [17], [28], [29], [38]. For example, Zhou et al. [14] forecast the 
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impact of changing climate across the 21st century for United States heating and cooling, 

finding that heating energy demand will gradually drop for all states, but cooling energy 

demand will ultimately increase after decreasing slightly from years 2005 to 2020. Emodi 

et al. [13] forecast electrical energy consumption in Australia using climate projections 

and find that electrical energy consumption may decrease in the first few decades before 

increasing and surpassing current energy consumption levels by the end of the 21st 

century. 

Climate projections are necessary to forecast future energy consumption. Globally 

generated climate projection models, known as general circulation models (GCMs), have 

been developed that span the 21st century. These projections are primarily based on GHG 

representative concentration pathways (RCPs), which project several global GHG 

emissions scenarios [15]. The World Climate Research Programme’s (WCRP) Coupled 

Model Intercomparison Project (CMIP) is an effort that has consolidated the output of 

over 50 GCMs with variable resolution ranges to generate universally accepted 

projections [60]. CMIP5 climate projections are used in this research. 

  Energy prediction and forecast analyses occur anywhere between facility to 

multinational scales [7], [9], [17]–[19], [29], [38]. For example, De Rosa et al. [18] 

addresses how energy savings policy can impact energy consumption at the facility level, 

while Amato et al. [9] provide a regional-level analysis that focuses on how changes to 

energy infrastructure impact energy consumption spatially. Organizations, independent of 

size, must pay the recurring and variable cost of energy to operate. Furthermore, the 

pivotal nature of organizational energy is exhibited through the costs to market sectors. 

Residential, commercial, and industrial sectors spent $224B, $201B, and $359B on 
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energy in 2017, respectively [4]. Even more broadly, U.S. energy users paid $1.1T, or 

5.8% of gross domestic product, for energy in 2017. 

At a facility-level, specific building types have been modeled and exported across 

various climate zones to understand the temporal and spatial impacts of a changing 

climate on facility types [18], [32]. However, in cases where facilities cannot be 

individually managed, organization or campus-level estimates are valuable. Few studies 

exist at an organization or campus-level, though aggregation or disaggregation methods 

are most commonly used to achieve results at this level of analysis. Dirks et al. [12] 

acquire facility energy modeling software that houses thousands of facility types, and 

energy information on an entire geographical region of the U.S. to model energy 

consumption and inform energy mitigation and savings techniques. The difficulty of 

campus-level analyses lies in capturing the different use regimes between facilities and 

accessing large quantities of facility-level data. Accessibility is an issue because 

municipality-sized communities may not have a singular method of procuring energy, 

and may not meter all facilities; therefore, multiple energy providers may serve the same 

city or town, making the collection of the data burdensome [33]. As a result, when 

assumptions are made, the reliability and exportability of the analyses are limited. The 

facilities-level studies provide useful results but are far too granular in their focus to 

provide value for energy managers of large campuses. At the same time, as depicted by 

[14] and [13], state or national trends are not actionable for campuses. The lack of 

reliable studies at the organizational level, coupled with future demand uncertainty and 

the magnitude of energy costs, clearly warrant investigation.  
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Despite the significant contributions of the aforementioned research, there is 

limited reported research that develops and analyzes energy consumption forecasts at the 

campus level. Accordingly, the objectives of this research aim to fill this knowledge gap 

in climate-informed energy management. First, using the results and model framework of 

Chapter 3, the most influential climate and time inputs are combined to create and 

calibrate a retrospective total energy consumption prediction model. Then, using CMIP5 

climate projection data, total energy consumption and costs are projected through the end 

of the century. This research is an example of how statistical modeling tools can aid 

energy managers in long-term operations and energy infrastructure planning. 

4.3 Data and Case Study 

The U.S. Department of Defense (DoD) owns 800 military installations that 

operate similarly to business, medical, and university campuses, and due to data 

availability, provide a unique opportunity to apply statistical modeling and climate 

projections at such a scale. As detailed in Chapter 3, the U.S. Congress is interested in 

understanding climate change’s impact on installation resilience and its operations. The 

DoD is the U.S. Government’s largest operational and facilities energy user [3]. As such, 

the DoD must consider how projected changes to climate may impact energy demand and 

use patterns. The 2019 U.S. Government Accountability Office report gauged the 

application of climate considerations on military installation infrastructure planning and 

operations. It highlighted the limited use of climate projections by installations to 

understand future climate-driven impacts [1], [2]. Accurate projections of future energy 

costs are essential for informing short- and long-term decisions and budgets. For instance, 
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in the short-term, accurate year-ahead forecasts can prevent underbudgeting, which drives 

the need to borrow from other facility sustainment funds. In the long-term, they inform 

long-range organizational operating budgets, aid the development of use and energy 

management policies, and justify incorporating technologies to mitigate potential energy 

cost variability to achieve energy savings. This research aims to apply climate projections 

to a military installation to inform these decision types. 

Few studies have focused on creating forecast models and analyses for a 

municipality or campus using historical energy data. This shortage of studies is largely 

due to limited data availability and resolution, which hamper statistical significance. 

Building Chapter 3, analyses are performed for Wright-Patterson Air Force Base 

(WPAFB), located near Dayton, OH. WPAFB employs over 30,000 people and includes 

industrial, commercial, community support, and residential operation types 

(approximately 26,500 facilities). Dayton, Ohio, is a temperate climate that experiences 

warm to hot summers, cool to cold winters, and moderate rainfall throughout the year. 

Chapter 3 finds that temperature is the dominant climate variable for total, campus-level 

energy consumption predictions at WPAFB, which is consistent with other studies at 

temperate locations. See Section 3.1 for more details on selected input types.  

WPAFB provided total energy consumption data across four consecutive years at 

the half-hourly scale, given in kilowatt-hours (1 Oct 2015 - 30 Sep 2019). The data’s 

scale most closely resembles that of a city, manufacturing complex, or medical or 

university campus. Because the finest resolution of the climate data is at the daily scale, 

the energy consumption data used to calibrate the prediction model was aggregated to the 

daily scale (average hourly energy consumption per day). WPAFB provided energy 
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invoices to gauge the unit cost of energy consumption for the installation. While the 

authors are not permitted to supply billed consumption, or rates, they may be requested 

via FOIA from the installation. Through personal communications with the utility 

provider, 5 cents per kWh is a reasonable unit cost for high energy consumers. Most 

often, negotiated rates for large consumers fall below household rates. 

CMIP5 projections of temperature at the highest possible resolution are used as 

the means to forecast energy consumption. Open-source climate projections were 

obtained through the Lawrence Livermore National Laboratory website. All available 

models and ensembles for the CMIP5 bias-corrected daily climate projections (BCCAv2-

CMIP5-Climate-daily) for maximum and minimum temperature were selected for both 

RCP 4.5 and RCP8.5. The two RCPs are used to demonstrate two potential ranges of 

future energy consumption values. The projection set for RCP4.5 consists of 19 models, 

with 42 projection ensembles, and RCP8.5 consists of 20 models, with 41 projection 

ensembles. The median value for all ensembles for each temperature variable and RCP 

was used to consolidate the ensembles into a single set of deterministic predictions. This 

approach is consistent with many studies where capturing the general responses to 

climate change is desired. WPAFB provided historical daily maximum and minimum 

temperatures to calibrate the statistical prediction model, matching the projection data’s 

scale obtained through CMIP5. Because temperature is the most variable data type used 

to calibrate the forecast model, knowing past trends in temperature could help understand 

how energy consumption may change in the future.  
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Figure 8. Time series of the historical and forecasted average annual temperatures: 

RCP4.5 (blue) and RC8.5 (orange). Generally, temperature will gradually increase 

throughout the century. There is a period of less substantial temperature increase between 

2010 and 2040, where a few years may experience average annual temperatures similar to 

those experienced at the beginning of the century. 

 

Historically, the period of 2016 to 2019 contains four of the top five warmest 

years on record. Due to the cyclical nature of yearly temperature, it appears that through 

2025, average annual temperatures could drop close to the lowest average annual 

temperatures experienced this century. From 2020 to 2040, there appears to be a period 

where little temperature increase occurs. These periods of low or stable temperatures 

could result in low or stabilized energy consumption, which is consistent with the 

research of [14] and [13]. However, after 2040, substantial temperature increases are 

projected (Fig. 8). 
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4.4 Methodology 

 Statistical forecasting techniques are used in many fields to understand the future 

impacts of climate change. This research uses temperature and categorical time variables, 

identified as the most influential variable types in Chapter 3, to create a cross-validated 

multiple linear regression model framework to apply RCP 4.5 and 8.5 climate 

projections. With energy consumption projections established, the unit cost is applied to 

determine the change in campus energy consumption cost due to changing climate. 

4.4.1 Forecast Model Calibration and Validation 

Specific input types were selected based on the results of Chapter 3 and the 

CMIP5 projections available. Chapter 3 identifies the model that was least complex while 

retaining the most skill, and principal components were correlated to the initial inputs of 

the model to determine those inputs that were most influential in the model. Creating lean 

models, reveals the variations of temperature, primarily dew point temperature, dominate 

the first six principal components. However, categorical time variables day-of-the-week 

and month are also influential inputs as they were also selected to create the lean model. 

As such, these two input types (temperature and categorical time variables) are adopted 

as the primary inputs that create the prediction model. 

A cross-validation step is added to a standard principal component multiple linear 

regression to develop a bias-limited prediction model that is informed with temperature 

and categorical time inputs (i.e., dummy variables). A leave-one-out cross-validated 

hindcast is produced for the entire historical dataset to obtain a set of deterministic 

predictions of expected energy consumption for WPAFB. The cross-validation process 
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produces a less biased and more conservative set of predictions because it removes the 

time-step being predicted but eliminates the need for a standard calibration and validation 

set. The tradeoff is that the percentage of variance explained by the model is generally 

less than it would be if cross-validation were omitted. The model developed is 

conservative as it assumes that the community’s use patterns are unchanging, i.e., the 

base does not grow or change with time.  

Explained variance (Pearson’s correlation coefficient) and mean absolute 

percentage error (MAPE) are generated to validate the prediction model’s skill. MAPE is 

commonly used in energy prediction research, and established thresholds exist to 

communicate the skill of prediction models [5], [56]. A MAPE score below 20 designates 

a prediction model of “good” quality, and a MAPE score below 10 designates a model of 

“excellent” quality [57]. 

4.4.2 Forward-Looking Forecasts of Energy 

Forecasts of daily energy consumption are generated by applying CMIP5 

forecasted maximum and minimum temperature inputs and categorical time inputs to the 

coefficients generated by the cross-validated energy consumption prediction model. This 

research uses a standard dummy variable assignment methodology, where the number of 

categorical variables is one less than the total actual number of variables. For example, 

the number of variables for weekdays is six (6), which is one less than the number of 

days in a week. The results are then aggregated to total yearly energy consumption to 

illustrate the century-scale energy consumption trend and differences between predictions 

informed with RCP4.5 and RCP8.5 temperatures. The annual total consumption 
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aggregation is computed by multiplying the resulting output from the forecast model, 

which is average hourly energy consumption per day, by 24 hours per day. This 

computation provides an estimate of total daily energy consumption. Next, each day’s 

total energy consumption was added within the same year to obtain total annual energy 

consumption. 

The energy forecasts are aggregated to total monthly energy consumption and 

placed in decadal categories (2020-2030, 2030-2040, etc.) to present a range of possible 

yearly energy consumption values for each year within a decade. Trends in monthly 

energy consumption are compared in this way across the century. One-way ANOVA tests 

are used to determine the significance of monthly energy consumption changes between 

the first decade and each subsequent decade to highlight when, during the century, 

monthly and seasonal trends diverge from current use behaviors.  

4.4.3 Forecasted Energy Costs 

A cost factor is applied by multiplying energy consumption by the per 

consumption unit cost of 5 cents per-kWh, discussed in Section 2.2. To understand the 

potential change in costs for WPAFB, annual change is determined by calculating the 

cost difference between a base year (2020), and each subsequent year (2021-2100). 

Values are reported as constant 2020 dollars. The result is the change in energy 

consumption costs due to changing climate, and more precisely, temperature. When using 

decadal categories, change in cost is determined by the difference in cost of energy 

consumption between decade 2020-30 and each subsequent decade. To probabilistically 

understand the potential change in energy consumption costs across the century, the 75th, 
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50th, and 25th percentile energy consumption values for mid- (2050-2060) and end-of-

century (2090-2100) decades are compared to those of the first decade predicted (2020-

2030). The difference in the range of energy consumption values shows how certainty in 

forecasted energy values changes over the century, and provides a method to develop a 

probabilistic range of possible cost outcomes that could be used to inform facilities and 

energy budget planning. 

4.5 Results 

 The results are organized such that they reflect the order of the methodology. 

First, the quality of the predictive model is evaluated through its ability to explain 

variance in historical energy consumption and through coefficient of determination and 

MAPE. Next, through the application of the predictive model in a forecast mode, 

projected total energy consumption is analyzed for the remainder of the century. Lastly, 

the energy unit costs are applied to forecasted yearly and monthly energy consumption to 

determine the future change energy consumption cost due to climate change-induced 

temperature rise. 

4.5.1 Prediction Model Calibration and Validation 

The prediction model produced a “moderate” explained variance of (r2 = 0.46), 

though it only contained the climate factor temperature: the most impactful climate factor 

by a large margin. The highest performing model produced in Chapter 3 resulted in an 

explained variance of approximately 0.70 but used more inputs of both climate and 

categorical time type. The model produces a MAPE of 6.95, designating the prediction 

model as being of “excellent” quality. 
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Figure 9. Time series plot of forecasted total annual energy consumption for RCP4.5 

(dashed blue) and RCP8.5 (orange), and the change in cost of total energy consumption 

from the year 2020 for RCP4.5 (dashed purple) and RCP8.5 (purple). 

 

4.5.2 Forward-Looking Forecasts of Energy 

Applying the model in a forecast mode reveals that energy consumption will 

increase by the end of the century for both RCP cases. However, RCP8.5 energy 

consumption increases more aggressively beginning around 2065 (Fig. 9). Between 2020 

and 2040, there is no substantial increase in energy consumption, nor is there a significant 

difference in consumption predictions for the RCPs. This result could be attributed to the 

recently observed decreases in temperature since 2017 and milder maximum and 
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minimum temperatures projected for the first two decades following the year 2020. 

Applying a linear fit to both RCP forecasts shows that energy consumption could 

increase by 0.80 GWh per year for RCP4.5 and 2.14 GWh per year for RCP8.5. The 

resulting cost increases are $40K per year and $107K per year, respectively. Though a 

basic result—energy use increases with temperature rise—is expected, the onset and 

magnitude of consumption and cost are not.  

 

 

Figure 10. Boxplots of the difference in monthly total energy consumption between 

decades 2020-30 and 2030-40 (red) and 2020-30 and 2090-2100 (blue) for RCP4.5 and 

RCP8.5. 
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Table 4. Significance of the difference in forecasted monthly energy consumption for a) 

RCP4.5 and b) RCP8.5 between the decade 2020-2030 and subsequent decades 
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Both RCP scenarios indicate that from decades 2020-30 to 2030-40 there will 

likely be no change or a drop in total energy, primarily within the boreal winter months 

(Fig. 10). By the end of the century, most months will likely surpass their 2020-30 energy 

consumption levels. Spring, summer, and fall months achieve greater energy 

consumption under RCP8.5, with higher degrees of significance, much sooner than 

RCP4.5 (Table 4). Again, while this general result is expected, the onset of significantly 

elevated energy consumption values was unknown until this point. Also, RCP8.5-

informed forecasts produce significant increases in winter energy consumption as early as 

the decade 2040-2050, while RCP4.5 results show decreases in winter energy 

consumption in this same period. Additionally, RCP8.5 monthly energy consumption 

exhibits a higher degree of inter-annual variability than RCP4.5, which could mean more 

uncertainty in forecasted results or less stability in annual consumption (Fig. 10). Less 

stability in consumption would make the task of budgeting on the part of energy 

managers difficult. Overall, there is high confidence that summer and adjacent seasons’ 

energy consumption will increase earlier in the century, while the timeframe for increases 

in winter energy consumption may vary. 

4.5.3 Forecasted Energy Cost 

Because the energy billing structure WPAFB faces is likely temporally insensitive 

at the seasonal scale, i.e., using 5 cents per-kWh as a cost factor, the century-long 

predictions of energy cost change follow predicted consumption patterns. Though this 

basic result is perhaps uninteresting based on the billing structure, the magnitude of the 
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project cost increases reported in this section emphasize how planning and budgeting will 

become increasingly important as temperature rises.   

There is little change in cost between 2020 and 2040, reflecting the consistency in 

the energy consumption predictions. Notably, the potential for energy consumption 

decreases in the winter months during this period. However, annual energy consumption 

cost is permanently positive (increase over historical conditions) by 2040 for RCP8.5 and 

2050 for RCP4.5 (Fig. 9, purple curves).  

 

 

Figure 11. The monthly difference in 75th percentile (blue), 50th percentile (green), and 

25th percentile (red) changes in cost from decade 2020-30 to decades 2050-60 and 2090-

2100 for RCP8.5. 

  

While deterministic predictions illustrate the general trend and magnitude of 

changes in consumption and costs tied to temperature, it is clear that interannual 

variability in climate, and therefore energy consumption, must be evaluated. To 
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communicate the difference in the range of possible changes in cost by the middle- and 

end-of-century, the interquartile range (IQR) percentiles are computed as a monthly value 

(Fig. 11). The trend is positive for most months and almost all values in the IQR. In some 

cases, during winter months, the 25th percentile forecasted cost change is significantly 

greater than the change at the median and 75th, meaning that costs in these seasons are 

likely to be most similar. In other words, the cost at the 25th percentile closes the gap 

with the median and 75th percentile predictions. When they change together, like in 

September 2050-2060 or April 2090-2100, there is no substantial change in the range of 

values.    

Overall, for RCP8.5, while many of the months will have increased costs by the 

middle of the century, months traditionally associated with low energy consumption may 

experience decreases in costs. For example, February could experience up to a $500K 

drop in energy costs, likely due to milder mid-winter temperatures. By the end of the 

century, summer monthly costs will have increased by $500-900K, and winter monthly 

costs will have increased by $150-650K. By summing percentile groups across months 

for the decade 2090-2100, it is found that the cost range of yearly energy consumption 

will increase between $7.3-7.9M. 

These results are consistent with similar works in this field of study. The energy 

consumption forecasts developed in this research show a constant, and even a slight 

decline, in energy consumption approaching the middle of the century. The work of [14] 

and [13] capture this phenomenon. For example, Zhou et al. [14] find that a slight decline 

in heating demand and a slight decline in cooling demand occur in the first half of the 

21st century for the state of Ohio. Since the primary facility energy drain related to 
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climate is heating and cooling, [14] appear to explain a large part of what is observed 

with total energy consumption in this research. In contrast to existing studies, the 

forecasts developed in this research aid in analyzing century-long energy consumption 

trends at the campus level using campus-level energy data.  Additionally, the inputs and 

predictive model development used to forecast energy consumption were informed by the 

bias-accounting framework developed in Chapter 3. 

4.6 Discussion 

 This research suggests that energy managers and campus leaders must be 

prepared for energy consumption and costs to increase over the century. Long-term 

consumption and cost forecasts, consistent with the type produced here, provide valuable 

information with which 1) the capacity of currently owned assets or infrastructure to 

support future operations can be evaluated, 2) the value of proposed renewable energy 

projects can be determined, and 3) future budget predictions can be generated. Overall, 

energy use increases with temperature increase. Though a basic result, the magnitude of 

consumption and cost increases is likely useful for energy managers who are expected to 

produce accurate, year-ahead budgets. For WPAFB, median expectations suggest that 

costs could increase anywhere from $2.5-7.9M by the end of the century ($40-107K 

annually). In other words, by the end of the century, the campus will need to budget for 

the monetary equivalent of the cost of a new facility each year. Annually, campus energy 

costs are increasing by the monetary equivalent of a facility system repair-sized project. 

Decision-makers must determine how and when to mitigate these costs with blends of 

policies and infrastructure adaptations. Possible mitigation strategies could include 
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enacting more effective operations policies that reduce energy consumption across a 

campus, like non-conditioned seasons [59]; using prediction modeling to inform 

proactive budgeting and prioritization of energy projects; implementing new energy-

efficient technologies; or integrating renewable energy resources. Determining when 

strategies must be implemented can also influence which action is taken. This research’s 

statistical forecast model is an effective tool for determining when strategies should be 

enacted.  

For instance, the deterministic analysis reveals that a consistent positive change in 

costs will not occur for WPAFB until approximately 2040 for RCP8.5 and 2050 for 

RCP4.5. These results suggest that energy managers have time to plan for or wait to 

make future decisions on how to mitigate energy consumption and cost increases. Even 

those strategies with the most time-intensive planning and funding processes (e.g., 

construction projects and integration of renewable resources) could wait 10 to 15 years to 

be enacted. With the possibility of a $2.5-7.9M increase in yearly energy consumption, 

the implementation of renewable energy resources, like geothermal or solar energy, could 

become a feasible option. The high initial investment involved with most renewable 

energy alternatives, because of large infrastructure additions, makes these options 

economically infeasible to energy users. Investment in renewable energy resources may 

become more justifiable knowing that $2.5-7.9M in cost increases could be mitigated 

through its less costly addition.  

Sub-annual analyses can inform decision-makers of what energy consumption 

types to target for mitigation strategies. From 2020 to 2040, energy consumption and 

costs may remain consistent or drop during the winter months. However, summer 
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months, such as July and August, may experience significant increases starting within the 

first decade. As such, decision-makers may initially target strategies that would mitigate 

summer energy loads. For example, higher facility temperature set points and load 

shedding could decrease facility cooling load. 

Considering the fixed nature of organizational budgets, and particularly those of 

the public sector, energy managers require tools, like this forecast model, to thoroughly 

justify project cost. These results suggest that the savings realized by larger investments, 

such as infrastructure modernization or renewable energy resources, could surpass the 

cost of the investment, given the forecasted energy cost increases. This justification is 

exacerbated by the fact that the estimates in this research are conservative. 

Mission and energy market changes were not factored into this research so that 

the focus would be the impact of climate change, specifically temperature, on energy 

consumption and cost. By not accounting for the future growth of WPAFB, or energy 

cost forecasts, the analyses here are likely conservative: especially considering that 

mission sets and the installation’s daily population will likely increase, campuses are 

more likely to expand capabilities, and energy prices increase as resources become 

scarcer. Specifically, for military installations, new mission beddowns are expected, 

which will increase daily energy use as people are brought in to staff new facilities. This 

expansion at WPAFB is synonymous with growth in any campus environment. However, 

development changes, on the century-scale, are difficult to predict. Because growth and 

cost forecasts were not the focus of this effort, these complications were not added. This 

allows the focus to remain squarely on the increase in energy use and cost growth due to 

climate.  
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This research is also limited in that the specific temperature variables identified as 

most influential in Chapter 3 were not available in the used climate projections. Other, 

less influential climate factors are also not included in this research. Though temperature 

type variables were used in this study, the hindcast skill is expected to be substantially 

less than when using the exact temperature inputs and other climate factors. The model’s 

framework also assumes that the impact of inputs, such as temperature, on energy 

consumption does not change over the century. Studies, like [31], that extrapolate 

temporal changes in climate factor impacts, must be conducted to understand the impacts 

of climate change holistically across the century.  

Regarding CMIP5 projections, the median of all available temperature ensembles 

was used to create the forecasts. Future research should test each ensemble as the 

temperature input for this forecast model to create a range of temperature-informed 

energy consumption predictions, thus better communicating model uncertainty. Finally, 

energy data was aggregated from an hourly scale to yearly and monthly scales, which 

introduces more uncertainty into the final aggregated energy values.  

Future research should incorporate less influential climate factors, ideally from 

CMIP6 and other projections, and possible mission and energy market changes as inputs 

to determine their impact on the model and forecasts. The prediction and forecast 

methodologies must also be applied across climate regions to test the framework’s 

exportability and adaptability. This research and that of Chapter 3 highlight the distinct 

connection between temperature and energy consumption. This research is conducted in a 

moderate climate region. If a $7M increase in annual energy consumption costs is 

possible in a moderate climate region, it would stand to reason that area that already 
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experience high temperatures could see more drastic increases in energy consumption 

with the forecasted increases in temperature.  

On the other hand, for colder climate regions, increased temperatures could 

reduce energy consumption because of a reduced need for heating [59]. As Chapter 3 

emphasized, these analyses must be applied across climate regions due to the spatial 

variation of impacts that climate change, and specifically global temperature rise, can 

create. As such, not all energy managers should have the same long-term energy asset 

management plans but customize them to fit their specific goals and environmental, 

monetary, and resource availability situations. 

4.7 Conclusions 

The prospect of a variable climate places accessibility of forecasts at a premium. 

To make long-term, data-driven management decisions, energy managers require 

consumption forecasts to inform how and when they should take significant mitigation 

efforts to alleviate energy budget increases. This research uses a two-phase statistical 

modeling approach to predict future energy consumption for WPAFB (Dayton, Ohio) 

through the end of the century. The first phase uses a cross-validated, principal 

component multiple linear regression, informed with historical observations of 

temperature and time dummy variables to produce parameter estimates. The second phase 

uses the parameter estimates in a forecast mode, using end-of-century temperature 

predictions from CMIP5 climate projections to forecast campus-level energy 

consumption. 



www.manaraa.com

80 

Results show that WPAFB could face meaningful increases in energy 

consumption: 19.3% for RCP8.5 and 4.8% for RCP4.5 by the end of the century for 

median predictions. The associated annual cost increases, for one military installation, are 

monetarily equivalent to building a new facility. The forecasts also reveal that significant 

changes in monthly energy consumption may occur within the next decade. Viewed at the 

DoD level, this cost drain per installation is substantial. The information provided by 

these forecasts enable campus energy managers to understand the magnitude and 

timeframe where energy consumption and costs could significantly escalate and justify 

how and when interventions are necessary.  

However, the forecast model framework also provides an accessible and 

spatiotemporally flexible pathway for energy managers to evaluate energy consumption. 

Thus, as climate forecasts become more skillful and climate data becomes more 

available, the model can be easily re-generated to understand how the influence of 

variables and future energy trends change. 

Ultimately, this exploration of campus-level forecasts of energy consumption is 

one of the first of its kind. Campus to city-level decision-makers require methods to 

determine future energy consumption trends and justify and advocate for adaptation 

investments. Such information can prepare energy managers to anticipate location-

specific changes to energy consumption and adapt long-term asset management plans. 
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V.  Conclusions and Recommendations 

5.1 Conclusions of Research 

Aligning with the first objective of this research, the literature review (Ch. 2) 

revealed the components of an empirical energy consumption prediction modeling, 

including 1) the selection of a spatial and temporal scale for predictions, 2) collection of 

historical energy consumption and climate data, and 3) selection of a regression 

technique. By researching each of these areas, the specific niche of this research was 

determined. First, it was found that few studies perform energy modeling analyses at an 

organization- or campus-level, using campus scale energy consumption data. Also, a 

variety of climate factors have been analyzed in energy consumption prediction 

modeling. Due to the spatial heterogeneity of climate impacts, it was determined that 

each location performing energy consumption modeling analyses should be exhaustive in 

the climate factors incorporated. Finally, though many regression techniques of varying 

complexity are used in energy prediction modeling, few utilize PCR. To achieve the 

second objective of this research, a campus-level energy prediction model developed 

using PCR and an exhaustive list of open-source climate factors is compiled. 

 To test the impact of climate factors on energy consumption and to determine 

whether skillful energy consumption can be achieved using climate inputs, a prediction 

model was generated in Chapter 3. All combinations of inputs (6) tested to develop the 

prediction model proved to be skillful, producing RPSSs greater than zero. However, a 

model consisting of climate and categorical (“dummy”) time inputs proved to be the most 

skillful alongside a model consisting of all variable types (climate, periodicity, and time), 
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with an explained variance 0.73, MAPE less than 10, and RPSS of 0.59. This result, the 

comparisons between models’ performance, and correlations between the initial inputs 

and PCs reveal that the climate variables are the most impactful inputs, and especially 

variations of temperature (dew point, dry bulb, and wet bulb). Other notable inputs 

include time variables day-of-the-week and month, and the climate factor for solar 

irradiation. For further energy analyses at the specific location of WPAFB, these 

variables will be important to include. When the categorical performance was tested, it 

was found that the climate and time model performed best in the high and low energy 

categories. These energy categories are where most key decisions regarding energy occur 

or will occur. Additionally, when using 75th and 25th percentile predictions, performance 

in the low and high energy consumption categories, respectively, increase. The model is 

not as skillful in intermediate energy consumption categories; however, fewer policy 

decisions are necessary for ordinary energy use. Overall, though the most skillful model 

is not as equipped to predict intermediate levels of energy consumption, it does perform 

well across all key skill metrics (explained variance, MAPE, and RPSS) and in the 

categories where most important decisions are made regarding energy consumption. It 

was determined that the prediction model performs adequately meet the second research 

objective and to be applied accurately in a forecast mode.   

Forecasts of energy consumption can inform energy managers of how and when 

short- and long-term interventions could be necessary, along with providing a tool to 

economically justify selected interventions. The generated forecasts revealed a 

consistency in deterministic annual energy consumption and costs from years 2020 to 

2040 for RCP4.5 and RCP8.5, after which steady increases ensue through the remainder 
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of the century. These results communicate that energy managers have time to wait to 

make decision or can begin planning for changes to energy consumption without 

immediately implementing interventions. At a monthly scale, statistically significant 

changes to both RCP4.5 and RCP8.5 summer month energy consumption could occur as 

early as the first decade after the year 2020, which usher energy managers toward 

targeting summer energy drains, like facility cooling. The probabilistic and deterministic 

results both indicate that annual energy consumption could change by as much as $7.3-

7.9M, in 2020 dollars, by the end of the century. Though campus leaders have the option 

of bearing the financial burden, many could resort or be forced to implement mitigative 

strategies. For smaller forecasted increases, implementation of effective energy 

consumption policy could be most feasible, while larger increases could warrant 

infrastructural upgrades. With end of century energy cost increases on the monetary scale 

of new facility construction, integration of expensive infrastructure modernization or 

renewable energy resources could become viable as potential long-term savings outmatch 

initial investment. In alignment with research objective three, forecasts were successfully 

generated that gave insight into future budgeting decisions for energy managers, while 

providing an effective tool to justify intervention timing and financial decisions. 

5.2 Significance of Research 

In a universal context, this research is one of the first of its kind because of its 

focus on campus-level energy consumption analyses using campus-level, historical 

energy data. In the past, researchers have resorted to aggregating facility data or 

disaggregate regional or state data to perform analyses for multi-facility to city-sized 
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communities. Access to military installation historical energy consumption data has been 

invaluable and established the accurate starting point necessary to develop meaningful 

energy predictions and prevent assumption-based limitations. Also, the combination of 

statistical bias correction and principal component regression is infrequently applied for 

energy consumption prediction research. This combination creates a prediction model 

framework that thoroughly accounts for statistical modelling bias and the 

multicollinearity inherent across model inputs. Additionally, with the ability to accurately 

predict and forecasts energy consumption at the campus level, the need to meter energy at 

facilities, and the associated costs, may become unnecessary for campus energy 

managers. This is particularly the case for installations or campuses where facility-level 

decision-making or control is not possible. 

In the context of the United States’ Air Force and military at large, this research 

acts as a response to Congress’s call for understanding climate change impacts on DoD 

operations. Using both historical and projected data, a prediction model was developed 

that determines the impact of individual climate factors on WPAFB energy consumption, 

but also forecasts future changes to energy consumption due to climate change using the 

most impactful climate factors. It was established that all models generated by this 

framework produced more skillful predictions than using historically driven predictions, 

thus making statistical modeling a viable alternative to prior-year energy consumption 

information. For the temperate location of WPAFB, forecasts depict end-of-century cost 

increases that could warrant implementation of renewable energy resources, thus 

implying justification for renewable energy resources in less temperate environments. 

Furthermore, this work provided discussions on the applications of both the prediction 
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model and forecasted information for energy consumption policy and budgeting decisions 

and justification. 

5.3 Recommendations for Future Research 

There are several areas in this research regarding input selection and compilation 

that should receive future research emphasis. These analyses focus on how climate 

factors and changing climate, via temperature, impact energy consumption. As such, not 

all explained variance is accounted for in the prediction model, and the forecasts are 

generally more conservative. Future research could explore how non-climate factors, 

such as energy market, mission, and population changes, impact energy consumption 

prediction and forecast model performance. Climate factors other than temperature 

should be included in future energy consumption forecast models and analyses to produce 

more accurate forecasts. Additionally, incorporating the potential changes in influence of 

climate factors across the century is not considered in this research and should be 

explored to more holistically understand the impacts of climate change on energy 

consumption. When compiling CMIP5 temperature projections, the median of all 

ensemble projections at each timestep were used to consolidate the ensembles. Future 

research should test each ensemble as the temperature input for this forecast model to 

create a range of temperature-informed predictions of energy consumption, thus better 

communicating model uncertainty. 

Further experimentation is warranted for several of the technical aspects of the 

prediction model development process in this research. For instance, one principal 

component retention ruleset—Joliffe’s Rule—was used to generate the final prediction 



www.manaraa.com

86 

model. Other rules, such as Kaiser’s Rule, could be used to test the range of skill 

resulting from more conservative or liberal rulesets. Also, the split points in the bimodal 

statistical bias correction process were manually optimized to find the setting resulting in 

the tightest fit to the observed data cumulative distribution function. Work could be done 

to computerize the optimization of the statistical correction split point selection to 

maximize prediction model skill.  

Future research is also required in the testing and application of models developed 

in this research. Several input combinations were tested in Chapter 3 to determine which 

produced the most skillful models. Each model performed better than climatology. 

However, for energy managers, deciding which model to use is more complicated than 

selecting which is most skillful. Depending on constraints to time, computational 

capacity, and expertise of energy managers, even the least skillful model may be the most 

viable. Further consideration should analyze the model complexity versus accuracy 

tradeoff and survey what energy managers find most valuable in prediction models.  

The performance of energy consumption predictions and forecasts is promising. 

However, performance of the model framework must be analyzed across climate regions 

to determine its adaptability and exportability. As such, future research should apply the 

model framework to other campuses, or military installations, across different climate 

regions. Stemming from the literature review, few studies have analyzed energy 

consumption or generated energy prediction models for developing countries. However, 

as data quality and quantity improve, these countries will provide a unique opportunity to 

analyze prediction models and climate change impacts on energy consumption in a 

variety spatial and situational circumstances. Additionally, if conducted for allying 
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countries, it could be beneficial for foreign affairs by fortifying national infrastructure 

and resilience for these countries.  
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